Technical Report B0O04

Technical Report (Final)
AD_AZ 1 8 694 (lassueld May 31, 19188
Duration Qctober 1, 1987 to March 31, 1988

Prepared Under

[T k Contract Number DAAB07-87-C-AQ35
F oy o1
- A5 PHASE | FINAL REPORT

SIS Final Report of
B & - Army SBIR Phase | Project
Advanced Facilities to Expedite Design and
Evaluation of Communications Systems

Prepared For

Frank Giordano, Project Leader
US Army CECOM
Fort Monmouth, NJ 07703

by

Information Research Associates
911 West 29th Street
Austin, Texas 78705

ﬁé@“% ch-«-—z—

Doug M. Neuse
Principal Investigator

The view, opinions, and/or findings contained in this report are those of the
authors and should not be construed as an official Department of the Army
position, policy, or decision, unless designated by other documentation.

v &

CECOM COMMUNICATIONS MODELING PROJECT
PHASE | FINAL REPORT

TABLE OF CONTENTS

ADSITACY........coieereiiirieiecsenestsnsne e sesneaessssessstesesassssserssesasssssnasassessassssansesessesasenssensasnrases 1
1.0 INEPOAUCHION .ttt ce e st cnsesesessas s aesesaesessesesesessesssanraessasassennonsasseses 2
2.0 Problem StatemMEnt...........ccereireeeeeeeiesrenssressseeressestsssesssssssessssssssssssenssssnens 4
3.0 ReSearCh APPrOACH........cccciveeerereereerreeeereeecsvreeerecveeressessesssssssessssssssssssessssonsas 6
3.1 Requirements and Experimentation Specification...........cceuuuue.. 6

3.2 Model Implementation and Experimentation...........c.cccevcuveevverruvecnnene 6

3.3 Enhancement SPeCIfiCation.......ccceverrrerrmrerirrerseerrecnsessreesssssesssneesenens 7

3.4 TTAINING....coisierrrertreriserrrrererssenasssssaseensessessesessessstasesssssessasensasesmsssssssasassns 8

4.0 Previous Related WOrK........ccccreeeressnneeeneneseasanssssssssesssessssssssassesssesssssssons 9
5.0 Modeling and Experimental Evaluation Results.........ccceevereeececcrerecennnnen. 11
5.1 Data Link Control ProtoCOl.....ccecvereeeecceeeereerreesrsernseans Seosaessassnesrane 11

5.2 Switching Network MO8l ... e resesaesenansenenene 13

5.3 Communications Switch Modelceoeeeierecrereeeeeeeeereeencaenenee 16

6.0 Summary of Enhancement Specification............cccceeceveereenenrecneeeeereserensnenen. 19
7.0 CONCIUSIONS ...eeereeencnenctenresesssssssesessssssassssassassssesssssssssrasassssessssssneseresesosas 21
8.0 RBIBIBNCES ...t te s s sans e sssese s sessesanesessasssassansasssnsasasases 22
Appendix A: Modeling and Experimental Evaluation Report..............ccccceuee..... A-1
Appendix B: C/PAWS Enhancement Specification.........cccceeeereveevmreieineeecenvennnnes B-1
Appendix C: Outline of PAWS and GPSM.........cvirrnnnccreinrnseseesessesesassenen C-1
VAccesr oy _]

NTIS ol X) i

P DT 0 |

‘ L - j E

VI8 KN '

i A) - . - . . JURN |

41 Crey ‘ ‘

ABSTRACT

This report describes the technical accomplishments and results of the Army CECOM
sponsored SBIR Project "Advanced Facilities to Expedite Design and Evaluation of
Communications Systems":" The goal of this project was to determine the feasibility of an
approach to high level simulation modeling of communications system. The approach is to
adapt ES/PAWS, a top-down design tool for electronic systems being developed for the
Navy [NAV 87, BRO 88]. The ES/PAWS tool is based on existing machine simulation
products developed by Information Research Associates (IRA). These products, PAWS
and GPSM [IRA 87a, IRA 87b], offer high-level visual and declarative facilities for
constructing simulation models.

We have 1) evaluated the requirements for a powerful high-level modeling tool for
communications systems; 2) constructed several experimental models to gain further insight
into the issues arising in communications system modeling, and drawn upon IRA's
substantial previous work in this area and 3) specified the enhancements required to
ES/PAWS in order to construct an eftective high-level communication modeling tool, to be
called C/PAWS.

We have established that the ES/PAWS tool currently under development will provide
many powerful features useful for communications modeling. As part of the ES/PAWS
development the graphical interface, GPSM, will also be substantially enhanced. We have
further specified that C/PAWS will contain many advanced high-level features for
communications modeling, including provision for libraries of re-usable submodels and C
functions, for modeling common communication components and algorithms. The
C/PAWS tool will also provide user-definable icons, improved graphical output of
simulation results, and specialized support for modeling communication features such as
timeouts and component failures.

The strategy of adapting ongoing development work and specializing it for communications
system modeling has been established as a very =fficient and cost-effective approach to
developing C/PAWS. Based on the promising finding of these preliminary studies, we
recommend the development of a prototype system for advanced modeling and evaluation
of communications systems.

1.0 Introduction

This report describes the technical accomplishments and results of the Army CECOM
sponsored SBIR Project “Advanced Facilities to Expedite Design and Evaluation of
Communications Systems". The goal of this project was to determine the feasibility of an
approach to high level simulation modeling of communications systems. The approach is
to adapt ES/PAWS, a top-down design tool for eiectronic systems being developed for the
Navy (NAV 87, BRO 88]. The ES/PAWS tool is based on existing mature simulation
products developed by Information Research Associates (IRA). These products, PAWS
and GPSM [IRA 87a, IRA 87b], offer high-level visual and declarative facilities for
constructing simulation models.

ES/PAWS is to be a major new product offering from IR A that will build upon the highly
effective modeling facilities of PAWS and GPSM. It will provide the expressiveness of the
C language, support for macro pre-processing and finite state machine specification,
submodel parameterization, and an enhanced version of GPSM which includes a graph
library facility, improved on-line help, and a structured input facility. The simulation tool
proposed for the Army, called C/PAWS, will enhance ES/PAWS to provide even more
powerful facilities for modeling communication systems.)

The problein statement and the research approach are described in sections 2.0, and 3.0.
There has been a substantial amount of previous work in this area by IRA and IRA clients.
This experience has been used in this project, particvlarly in the area of modeling the efiect
of failures in distributeg systems, as described in section 4.0.

The project accomplished several tasks, the - :being the evaluation of the requirements
for a powerful high-level modeling tool for Army communication systems {IRA 88]. The
succeeding tasks included simulation modeling and experimental evaluation of some
ref.ssentative Army communications system, and specification of the enhancements

required to ES/PAWS in order to make modeling of communications systems even easier
and more efficient.

The object of the modeling and experimental evaluation task of this project was to construct
prototype models of some aspects of Army communications systems. These inciude
models of communications components, protocol and algorithms from several different
layers of the communications systems and included the modeling of the effect of failures on

-2 -

the system. The principal results of this task are summarized in section 5.0, and the report
describing the modeling experimental evaluation task is included as an attachment to this
report.

The enhancement specification task discussed the features and enhancements required to
ES/PAWS in order to make C/PAWS an elegant high-level simulatdon tool for Army
communications systems. Since the actual implementation of C/PAWS is to be done in a
Phase II project, the specification discussed the fur.ctional enhancements reqmrcd, rather
than specifying the implementation strategy. The principal results of this task are
summarized in section 6.0, and the C/PAWS enhancement specification is included as an
attachment to this report.

The previous work done by IRA in this area, the experimental evaluation, and the
enhancements specified for ES/PAWS have established the feasibility of using C/PAWS to
model the Armv communications systems. Adapting the ongoing ES/PAWS development
work for C/PAWS is a particularly efficient and cost-effective approach to building a
specialized communications modeling tool. Based upon the promising findings of these
preliminary studies, we recommend the development of a prototype system for advanced
modeling and evaluation of communications systems. ¥ '

2.0 Problem Statement

The general problem area addressed by this project was the modeling of communications
networks of interest to the United States Army. The specific problem was:

a) to assess the feasibility of using a prototype modeling tool, ES/PAWS, to
satisfy the requirements of the U.S ~rmy for rapid and effective modeling of
such networks, and ’

b) to determine any enhancements to ths ‘ool necessary for such modeling.

- ES/PAWS is a tool for top-down design and analysis of electronics systems. It is being
developed under a Phase II SBIR grant from the United States Navy, anc is:based upon the
Performance Analyst's Workbench System (PAWS) {IRA 87a] and Graphical
Programming of Simulation Models (GPSM), [IRA 37b].

PAWS is a successful, commercially available simulation language. It provides a high-
level declarative specification language that reduces modeling errurs and speeds model
development compared to traditional procedural simulaiion languages. GPSM is the
graphical front end to PAWS. It allows the user to develop PAWS models by drawing
pictures (the pictures are the models), thereby reducing modeling errors and speeding
model development further. GPSM also provides excellent presentation materials
(pictures) for these models (see appendix C).

The modeling of U.S. Army communications networks has unusual requirements.
a) The performance of commercial systems is primarily concerned with optimality
under rather stable operating conditions. The performance of military systems

is primarily concerned with adequacy under dynamic conditinns.

b) Performance in the presence of faults and performance with degraded resources
are of prime importance.

¢) Since so many communications protocols and routing algorithms are in use, an
effective communications modeling tool requires a library of submodels for

d)

such protocols and algorithms, with a capability for user modification of this
library.

The network requirements change rapidly. Protocols and routing algorithms
must be designed and analyzed rapidly. Models of these protocols and routing
algorithms must therefore support correctness validation as well as performance
analysis.

3.0 Research Approach
The approach we took to this problem is described below.
3.1 Requirements and Experimentation Specification.

The first task in this project was to spec:fy the requirements for the graphical interface,
simulation system and submodel library. and to define a plan for cxperimen(al
demonstration of the modeling system. [RA representatives visited CECOM early in this
project. We interviewed representatives of CECOM and obtained documents describing
Army communications systems and modeling procedures. We studied the documents and
professional literature in this area, and discussed our ideas with CECOM staff and with
Professor Simon Lam, a noted expert in analysis of communication systems.

Basc upon these interviews, analysis of the documents and literature, and discussions with
CECOM suaff and Professor Lam, we prepared a requirements and experimentation
specification report [IRA 88].

The requirements included the following:

a) suitability for use by communicatons engineers as well as network designers
and analysts, and

b) ability tc model and evaluate a variety of networks including:

circuit-switched networks,
TDMA networks,
packet-switched networks,
net radio, and
message-switched networks.

3.2 Model Implementation and Experimentation

The next task in this project was to implement and execute a collection of PAWS/GPSM
communications models for the purpose of evaluating the effectiveness of PAWS/GPSM

and ES/PAWS for communications networks. The models implemented and executed
included the following:

a) adata link control protocol
b) acircuit-switched network with the following routing schemes:

static shortest path routing

a distributed adaptive algorithm

flooding

static shortest path routing in presence of failures

¢) acommunications switching element.

The execution of these models demonstrated that it is feasible to model many aspects of
communications systems using PAWS. Several issues were raised during this task, and
some limitations were found in PAWS, many of which will be overcome in ES/PAWS.
The modeling and experimental evaluation are discussed in detail in the Appendices.

3.3 Enhancement Specification

The last major task in this project was to specify the enhancements to PAWS/GPSM and
ESPAWS required for an effecdve tool for modeling Army communications networks.
Many of the enhancements will become available as part of ES/PAWS later this year. The
enhancement specifications were produced as follows:

a) evaluating the siiortcomings of the mcdele described in section 5 and Appendix
A

b) studying the enhancements already underway as part of the ES/PAWS project,
and

c) developing specifications to bridge the gap between ES/PAWS and the Army
modeling requirements.

The recommended enhancements are discussed further in section 6 and Appendix B.

-7 -

3.4 Training

IRA will train CECOM staff in the use of the PAWS/GPSM communications models
developed during this project. The purpose of this training is to allow the CECOM staff to
gain familiarity with the use of such models, and to assist IRA in specifying modeling tool
enhancements to be implemented i,: 2hase II of this project.

4.0 Previous Related Work

There has been a substantial amount of modeling done in this area by IRA and IRA clients
using PAWS and GPSM. We have drawn upon this experience during this study.

Some of this work indicates how PAWS and GPSM can be applied at any level of
abstraction for modeling communication system components. At the physical layer of the
OSI model [TAN 81}, communication involves the transmission of bits over some
(possibly error-prone) medium. A detailed model of the performance of an SNA
communication line has been constructed using PAWS [DOR 84].

[t is also possible to model an aspect of the OSI layer 1 and layer 2 interface, i.e., the
communications hardware used to transmit and receive data from the communications
medium. Typically this hardware is largely encapsulated in an IC chip that can also provide
fairly sophisticated services such as zero insertion/deletion, generation of packet headers
and check sums, and framing of incoming data. A model of a specialized high-speed VLSI
communications chip has been constructed at IRA [JAI 87]. The chip consist of an 8-bit
processor, high-speed serial communication controller, on-chip RAM and ROM, and
interface to the host system CPU. The on-chip processor executes software-for an OSI
layer 2 (data link control) protocol. A model of the chip hardware was constructed in less

than ten days and was verified in a few days by comparing emulation results with
experimental data.

The performance of various layers of the OSI communications model has been studied.
The performance of packet-switched inter-processor communications has been modeled
[UPC 84] for a reconfigurable database machine architecture with dynamic connection of
processor to memory via a regular SW-banyan blocking network. A model for predicting
the peak and average response times for a cluster of VAX 11/780s at the link of a network
with a star topology has also been constructed using PAWS [IRA 86]. The impact of
communications services on overall system performance has been studied for a real-time
point-of-sale system using PAWS [AND 84]. This model predicted significant

performance improvement by inc.casing communication line speed from 4800 to 9600
baud.

Several studies by [RA and IRA clients have included modeling of failures in distnbuted
systems. Performance models of a distributed real-time command 4and cuiitrol system are

-9~

described in [FER 84, PAL 85]. These models include simulation of fault injection,
propagation, and recovery. The models address the performance of transaction comumit
protocols in a distributed environment, and include submodels of a network interface, a
long distance communication link, and a local area network (Ethemnet). The model showed
that resource contention a: a remote host could cause as serious a performance degradation
as a failure. It was also shown that an adaptive timeout mechanism can improve
performance by minimizing "spurious” timeouts due to resource comerm'on.‘

The performance of a token-passing ring and a reconfigurable lookahead network in the
presence of failures has been modeled using PAWS [VEL 86]. This study also examines
the performance of a failsafe distributed routing protocol in the presence of node and link
failures. A study conducted by an IRA client models the performance of a Sperry 1100/44
based system with multiple command, arithmetic and peripheral processors used for real-

time computations [CON 86]. This model considers the effect of failures on the execution
of real-time tasks.

The experience gained from these previous studies has been very helpful in evaluating the
feasibility of using C/PAWS for modeling Army communication systems. The work on
failure modeling [FER 84, PAL 85, VEL 86, CON 86] has been particularly relevant for
appreciating the effectiveness of PAWS in this area. These studies demonstrate that
PAWS/GPSM can and has heen used effectively for modeling many aspects of
communications systems at any desired level of abstraction.

-10 -

5.0 Modeling and Experimental Evaluation Results

The emphasis of the modeling and experimental evaluation task of this project was to
determine the limitations of using the current versions of GPSM (2.3) and PAWS (3.0) for
modeling communications systems. It should be noted that the objective of the experiments
was not to construct prcduction-quality simulation models. The effort was focussed on
discovering the enhancements required to PAWS and GPSM, rather than on constructing
sophisticated or efficient models. '

Simulation models for the following communications system components have been
constructed and evaluated for this study:

1) A data link control protocol

2) A circuit-switched communications network with the following routing
schemes:
a) Static Shortest Path Routing
b) A Distributed Adaptive Algorithm
¢) Flooding .
d) Static Shortest Path Routing in presence of failures

3) A communications switching element

Although these models were constructed with certain types of communication networks in
mind, they address issues common to a wide range of network modeling situations. The
modeling and experimental evaluation report attached to this report discusses the models
that were constructed, the simulation results obtained, and the insights gained from this
experience. In this section we summarize the findings of the modeling task.

5.1 Data Link Control Protocol

The top-level GPSM graph for this model is shown in Fig. 1.

-11 -

sydeab teaet-doy ttépod toootoxd toajuoo jugt eijed

Sy
Sswg
nipoud
I I—]
ey fowy

t *bta
gdustites | disoudites feuig
I I
fewy
210049
yarqpe? uycodnm?? Qamy

uaninns

— ¢TI

I 7!

uysuL tydenn

-12 -

It seems clear that the key aspects of data link protocols can be modeled in PAWS. This
modeling will become even easier and more convenient in ES/PAWS, which will retain the
declarative and visual programming aspects of PAWS and GPSM, and in addition provide
the convenience and expressiveness of the C programming language.

An important aspect of this model is that it addresses issues such as timeouts, flow control,
and message loss, which occur not only in the data link communications layer but also in
other layers of the OSI model.

The model can be extended quite easily to deal with protocols with larger window sizes. If
a specialized node type is developed to represent timeouts, as suggested in the enhancement
specification, this type of modeling will become quite easy in C/PAWS.

5.2 Switching Network Model

The primary objective of the model is to investigate the effect of routing algorithms on the
performance of circuit-switched networks. However, it should be noted that the
performance issues involved in non-hierarchical routing in circuit-switched networks are
very similar to those involved in routing for packet-switched networks [SCH 87]. Thus by
restricting attention to non-hierarchical routing algorithms, the model can be used for both
circuit-switched and packet-switched networks, possibly with a small amount of
modification. The top-level GPSM graph for this model is shown in Fig. 2.

-13 -

‘ydeab toaet-dol 1{OpOW NITOMIBN PAUDITMS ? ‘b3

14

qute[1#d mes wtodptes CERU L i
[O————at— —je———_131 I
[
sase0(yeis8t TEI L L auoaymu atyen a1nnzul
e et T IO me——]
uotjeuyyeep yeirep Yutio
CCe——¢—ec—

The network routing function is encapsulated in the PAWS submodel ¢switch. Three
different classes of routing algorithms were modeled. These represent very different types
of routing criteria--ranging from minimizing response time to achieving maximum
reliability. We have chosen to implement an instance of each type of algorithm in order to
determine the feasibility of modeling that class. The algorithms modeled are:

1) Static Shortest Path Routing

2) A Distributed Adaptive Algorithm (Hot Potato)
3) Flooding

4) Static Shortest Path Routing with Failures

The routing algorithms were all run on the same example network [SCH 87].

It was found that all of these algorithms could be modeled fairly easily. All changes to the
model were encapsulated in the submodel gwitch. The basic structure of this submodel
remained the same for the different algorithms (except for the failure case), requiring
changes only to the routing calculation.

Some of the issues raised by these models are summarized below:

1) C function utilities for calculating model parameters (eg. shortest paths) will be
useful to the model developer

2) Hot potato routing was easy to implement as the key parameters required were
conveniently available; in ES/PAWS this capability will be expanded.

3) Collecting response time statistics for an algorithm such as flooding can be made
easier if more flexible FORK/JOIN constructs are provided in C/PAWS.

4) Verifying model correctness is not trivial, and support from the simulation tool is
desirable.

5) Itis important to distinguish between the model user and the model developer.

The developer's interface should emphasize flexibility and power. The user's
interface should emphasize simplicity.

- 15—

6) Failure modeling can be modeled adequately.
5.3 Communications Switch Model

The switching element model studies the behavior of a switch in a circuit-switched
network. The switch receives call requests from stations connected to it, and attempts to
assign cutgoing lines to satisfy these requests. Eventually all outgoing lines are allocated,
and further incoming requests are called "lost calls”. This model estimates connect time for
a simple queued mode (lost calls delayed) circuit switch. The GPSM graph for this model
1s shown in Fig. 3.

-16 -

10pOR Yo3tmg BUOTYPOTUNMMIOD | n ‘btda

ta.nutl 1teapud

v N——8 1

eydostp
100uu0se1p pudd il eyep ocaydaoetp umopsestd
DS BD———IBD—s—————3 P
eydastip @ @ eydeun @ euydasip
GUOYIAS 199UU0d sbyuit RILYE bospude bosgter
4 | . ¢
P @ T dpa 6P IiE— T@TnsrTn_.]
ateydeud J9meue
eydbag R}—— eydeun ’ @.!#I\

o) DR W

-17 =

This modei is a simple but fairly useful simulation of queued mode call processing for
communication between two network switches. It is quite easy to generalize to the case
where there are M switches with a different number of links between switch A and other

switches by using arrays of SERVICE and ALLOCATE nodes. Since this can clearly be
done within PAWS it was not pursued.

A miteresting point is that to be accurate in the case where there is more than one switch to
which switch A is connected, the "background" traffic in the network needs to be
simulated. Since the call processing scenario is deterministic, the background processing
can be calculated quite accurately for a certain network node, and fed as transactions that
interfere with A-B communication at nodes switchA and switch B. This approach will give
a more realistic estimate of network behavior, without the complexity of detailed

simulation. In this way a much more complicated situation can be modeled with fairly
smali changes to the model.

~-18 -

6.0 Summary of Enhancement Specification

ES/PAWS and C/PAWS will be more flexible and powerful than the currently existing
PAWS software and, in particular, will incorporate the expressiveness of the C
programming language. Through the use of the highly user-friendly graphical interface,
GPSM, and the use of libraries of submodels and procedures, a user will be able to
simulate complex communications systems without needing, in general, to write code.
Creating and maintaining the submodels and associated procedures, however, will require
some familiarity with ES/PAWS syntax; these steps would be carried out by a model
developer rather than a model user (see Appendix A, sec. 3.1).

Using C/PAWS the user will be able to obtain detailed simulation results; these results can
then be input to other software packages such as SAS or SPSS to display the results of a
single simulation run graphically (such as histograms of response times), as well as the
results of several simulation runs (such as variations in response time as the offered load is
increased upon each new run).

Some features of ES/PAWS particularly useful for communications modeling are:

access to the C language (data structures, expressions, functions, etc.)
* Macro pre-processor

* submodel parameters

« finite-state machines

» enhanced version of GPSM, including:

* structured input facility (SIF)

* graph library facility

* scrolling GPSM graphs

* improved on-line help

» critique of GPSM graphs

-19 -

The proposed specific C/PAWS enhancements include:

1)
2)
3)
4)
5)
6)
7)
8)

9)

Forms and menus for the model user interface

User-defined icons for specialized components

Convenient specification of statistics collection, including statistics involving
submodels

Processing of simulation output for graphical display

A TIMEOUT node type for modeling communications protocol features

An Interrupt Resume node type for making failure modeling easier. This fits
into an overall failure modeling methodology

Libraries of C functions for analytic bottleneck analysis and routing algorithm
calculations

Libraries of re-usable submodels encapsulating common communications
suvsystems

Specification of integrity constraints and reasonableness checks for nodes,
transaction states, submodels and simulation results

10) More flexible FORK and JOIN constructs
11) Explicit control of the generation of transactions at SOURCE nodes, allowing a

user to control a simulation run more closely

12) Support for hierarchical simulation

-20 -

7.0 Conclusions

This project has convinced us that it is indeed feasible and practical to satisfy Army
communications modeling requirements by enhancing ES/PAWS according to sections 6.0
and Appendix B. We believe that such an enhancement project will produce a commercial
product that will dramatically improve the design and analysis of military communications
networks as well as non-military networks. Some of the enhancements are already
underway as part of the ES/PAWS project. The other enhancements await Phase II of this
project.

-21-

8.0 References

AND 84
G. E. Anderson "The Coordinated Use of Five Performance Evaluation
Methodologies”, Communications of the ACM, vol. 27, no. 2, 1984.

BRO 88
J. C. Browne, P. Jain, D. M. Neuse and M. Esslinger, "ES/PAWS - A System
Level Design Aid", submitted for publication in Proceedings of the Design
Automation Conference, June,1988.

CON 86
Customer confidential document. The model involves a Sperry 1100/44 computer
system with multiple command, arithmetic and peripheral processors used for real-
time computations. Permission is being sought to disclose this information.

DOR 84
Vladimir Dorfman, "SNA Communication Line Performance Analysis", Fujitsu
Systems of America, Technical Report 92-00024, July, 1984 (proprietary).

FER 84

V. Fernandes, J. C. Browne, D. Neuse, and R. Velpuri, "Some Performance
Models of Distributed Systems", Proceedings of the CMG XV International
Conference, Dec., 1984,

HAM 86

J. L. Hammond and P. J. P. O'Reilly, Performance Analysis of Local Computer
Networks, Addison-Wesley, 1986.

IRA 86

"PAWS Performance Models of a Computer Network Hub," Information Research
Associates , Internal Document, 1986.

IRA 87a

Information Research Associates, Performance Analyst's Workbench System
(PAWS) User's Manual, 1987.

IRA 87b

Information Research Associates, Graphical Programming of Simulation Models
(GPSM) User's Manual, 1987.

IRA 88

Information Reserach Associates, "Requirements Specifications for C/PAWS",
Task 1 report of U. S. Army CECOM Phase 1 SBIR project, submitted to CECOM
on January 6, 1988.

JAF 82
M. Jaffe and F. H. Moss, " A Responsive Distributed Routing Algorithm for
Computer Networks", [EEE Trans. On Comm., Vol. COM-30 no. 7, pp. 1758-
1762, July 1982.

-

-22 -~

JAI 87

Prem Jain, "Architecture Design of a VLSI Chip Using PAWS/GPSM", Technical
Report, Information Research Associates, July 1987.

LAW 82
A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, McGraw-Hill,
1982

NAV 87

United States Navy Contract No. N60021-86-C-0145, High Level Simulation of
Electronic Systems, 1987.

PAL 85

Annette Palmer, J. C. Browne, J. Silverman, A. Tripathi, and R. Velpuri, "A
Performance Model of a Fault-Tolerant Distributed System for Evaluating

Reliability Mechanisms"”, Proceedings of the CMG XVI International Conference,
198S.

SCH 87

Mischa Schwartz, Telecommunication Networks: Protocols, Modeling and
Analysis, Addison-Wesley, May 1987.

TAJ 77

W. D. Tajibnapis, "A Correctness Proof of a Topology Information Maintenance
Protocol for Distributed Computer Networks", Comm. ACM, vol. 20, pp. 477-
485, July 1977.

TAN 81)
Andrew Tanenbaum, Computrer Networks, Prentice-Hall, 1981.

UPC 84
E. Upchurch, "Modeling Packet Switched Interprocessor Communications”,
Proceedings of the 15th Annual Modeling and Simulation Conference, University
of Pittsburgh, 1984.
VEL 86

Rajkumar Velpuri, "Performance Study of Zeus Distributed System with Different
Communication Networks", M. S. Thesis, The University of Texas at Austin,
May, 1986.

~23—

- _ g\

Appendix A

Modeling and Experimental Evaluation Report

1.0
2.0
3.0

4.0

Contents

INETOAUCTION ettt ceeseeees e tses s s sssssssesssssssssnssnssnssnsnsossnsssasesarssanan A1l
Simulation Modeis..........cuuu...... eeesseeesesessstaseseetsesessessasasssasannsnssnansssrasnssneenenane A3
Data Link Control ProtoCol MOGE!........eeeieeeerremeeieerereeeereeneeecssereeeesessennsssseenenes A4
3.1 THE PrOtOCOL...uceeeeiirtereirireresecereseseercssosssaseeseosssssssnsnnsessssness reveessesennsasess A4
3.2 Modeling APProach ... viercrerenenerreseereesesssessnessasasssesansseseens . Y-
3.3 ProtOCOI MOGEI ..uuuieeieeveeeteececccntieseseeseeseseeseesssonsessosessssssssosssnsessssanss A5
3.4 FIOW CONMIOL...coeiiiceieieeeeeeeteceeeeecreeesesessscsensessessesssnsesssssssnsessesesssossasnnne A7
3eD TiMIBOUL . ettt ieeereeereeeveeesssssenesssssssancossassnsenasnsessssesesnsesansssseresnanssranas A9
3.6 SiMUIAtION BESUIS...uueeeeeeeeeeieeeeeiereceececeecseeeiseeeeerseesesnsenssessesessasesesenns A11
3.7 SUMMMAIY ittt stersras st sse s s st asas sesnesa snsnsassesassessesnsonsanans A13
Switching Network MOdel ...t esaeesees e asssesesanns Al14
4.1 NOIWOTK MOeeeeeeetteeeeerecereeeerecsessaeasetseessssssnsesssssssassesssssssssnens Al14
4.2 Routing AlGOritNMScceeeecereecerereninreesteeseesaesesnesessssensssarsssssesannnens Al7
4.3 Static Directory ROULINGcccceeeeecrcrreencsernsesscessesasseccsssssssssssssonsasosess A19
4.3.1 ShOrtast Path TrEesS...ccceereecceereeeeeirseeseresesssssercessosessassssennes A19
4.3.2 Routing MOlccccvrcirineencsssensisissensmssisnssassssnssassssseassases A21
4.3.3 Simuiation Experimentsccceeceveeeecarercsaeaercess eeeeerenens A24
4.3.4 Variations on Shortest Path Routing......ccccecveeecvnerinnccennne A26
4.3.5 DiSCUSSION.cceeeeeeieeeeeecrneterecesansessessssssesssnsessseseenssssesessssssnen A26
4.4 Distributed Adaptive ROULING......cccccremrercrnenceronsnnssnssscsscesnscssennense A27
4.4.1 Hot Potato Routing Modelccueeriecccrnneennracncsncsinnenenes A28
4.42 SIMUIGHON RESURS.......cccoerieriercreerereennsnssenssesseresssessosssasonens A31
Q.43 DiSCUSSION. ... eeeeeeeieeessreenseeeeessesesessessesssssesssssssssessnssssssesses A33
4.5 FlOOQING...cciriiceireecerreriiesiesnermssseseessessesnsansessessessasssansasensassssessesasssssansase A34
4.5.1 RoUting MOdelccceeerrerenrriereneenreeserersrescesenesnssssassasesacsanes A34
452 Discarding DUpliCAteS........ccceverrmieeiicernvrincsnnncrisensinnenienes A38
4.5.3 NEtWOrK OVEIIOW. ...oioiireeeeeeecererrerrereeereneereeeeeressessasessssessssene A40
4.5.4 SimUIGtion RESURS...c.ccoceeeeeriererercrrrseeeenersseeesesssessnssssssssssones A41

A.5.5 DiSCUSSION........ceeeeeieeerssrerseeseessesessssssssesssassessssssssssssssssssssnse A41

Contents (Cont'd)

4.6 Shortest Path Routing With Failuresccccecveecereccnsvieccanrerenssnenene Ad2

4.6.1 Failure MOodel..........ueieeiericeeereecrnereeneenaressssseessssnsesssnnens A42

46.2 Simulation Experiments ... T A44

4.6.3 Adaptive Shortest Path Routing......cccceveeceommmecncucersnccacen A46

4.6.4 DiSCUSSION.....ccoueereirerereerirerissneesssneecssseessnmessssssessesessasressns AS50

5.0 Communications Switch Model A51
5.1 SWItCh MO8 ...ttt e sesaressesseanes . .A53

5.2 Simulation EXPErimMentsceonienseiossissmssssssssasens AS55

B.3 DiSCUSSION. ... ueeeiiecieeeerereserteeeressstessssesensseseessnsesssnacssssasseassssnassssassossesssnn AS57

B.0 CONCIUSIONS cueeceetreeeeerereietiecrieseneesnesessersssssssesssssnsnssesassssesssssssssessensesssnssssossens A58
REBIBIBNCEASeeeeeeccietreeccinreeecrssneteesessssnsesssssssassssssesssssessronsssssensenssrassessnassssnssssssnse AS59

Fig.
.18
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

1A

1C
1D
2A
2B
3A
3B
3C
3D
4A
4B
4C
5A
58
6A
6B
6C
7A
7B
7C

List of Figures

Data Link Control Protocol Model: Top-Level Graph
Data Link Control Protocol: Flow Control Modeling
Data Link Control Protocol: Timeout Modeling
Response Time Statistics for Data Link Control Protocol
Switched Network Model: Top-Level Graph

Example Network

Shortest Path Tree

Static Shortest Path Routing

Static Shortest Routing Data Structures

Response Time Statistics for Shortest Path Routing

Hot Potato Routing: Switch Model

Significant Data Structures for Hot Potato Routing
Response Time Statistics for Hot Potato Routing Algorithm
Flooding: Modified Network Model
Flooding: Switch Model

Failure Modeling for Shortest Path Routing Switch Model

Response Time Statistics for Shortest Path Routing with Failure
Switch Model for Adaptive Routing in the Presence of Failures

Call Processing Scenario
Communications Switch Model
Connect Time Statistics for Queued Mode Circuit Switch

CECOM COMMUNICATIONS MODELING PROJECT PHASE |
MODELING AND EXPERIMENTAL EVALUATION REPORT

1.0 Introduction

The objective of the modeling and experimental evaluation task of this Phase I project is to
determine the feasibility of using IRA's PAWS and GPSM simulation tools [IRA 87a, IRA
87b] for modeling the performance of Army communication systems. The approach taken
is to construct PAWS/GPSM models for a variety of representative communication systems
used by the Army, and evaluate the limitations encountered in the simulation tools while
doing so. The experience gained from these experiments will then be used to define the
enhancements required to the simulation tools in order to model Army communications
system easily and efficiently. These enhancements will be carried out in Phase II of this
project, with the resulting advanced simulation tool for modeling communications systems
called C/PAWS. The overall approach to developing C/PAWS is to adapt ES/PAWS, a
top-down design tool for electronic systems being developed for the Navy [NAV 87, BRO
88]. ES/PAWS will be adapted to modeling communication systems, using the knowledge
and experience gained during this Phase I project.

The emphasis of the modeling and experimental evaluation task of this project is to
determine the limitations of using the current versions of GPSM (2.3) and PAWS (3.0)
for modeling communications systems. It should be noted that the objective of the
experiments discussed in this report is not to construct production-quality simulation
models. The effort is focussed on discovering the enhancements required to PAWS and
GPSM, rather than on constructing sophisticated or efficient models.

Several simulation models have been constructed which reflect many issues in
communication systems performance modeling in general, and Army networks in
particular. The models study features common to several network layers (e.g., imeouts
and flow control) as well as several switching methods (e.g., routing for circuit, packet and
message-switched networks). An important aspect of the experience that IRA has gained in
this area is expertise in modeling the effect of failures on communications systems
performance. This work has previously been published [FER 84, VEL 86} and drawn
upon in this study due to its special relevance to the Army.

-A-1 -

——]

The following sections describe each of the models and routing algorithms developed in
this study and the results of using these models to perform some simple simulation
experiments. This is followed by a brief discussion of the experience gained during the
experimentation. Extensive simulations were not carried out as it was feit that they would
not provide any new insights into the enhancements required for C/PAWS. A detailed
discussion of the limitations encountered in PAWS and the enhancements required will be
presented in the enhancement specification (Task 2) report of this project.

2.0 Simulation Models

Simulation models for the following communications system compoaents have been
constructed and evaluated for this study:

1) A data link control protocol

2) A circuit-switched communications network with the following rbut.ing

3)

schemes:

a) Static Shortest Path Routing

b) A Distributed Adaptive Algorithm

c) Flooding

d) Static Shortest Path Routing in presence of failures

A communications switching element

As explained later in this report, although these models were constructed with certain types
of communication networks in mind, they address issues common to a wide range of
network modeling situations.)

In addition to the models listed above, PAWS and GPSM have been used by IRA and IRA
clients in order to model the following:

1)
2)
3
4)
5)
6)
7
8)

9)

The CSMA/CD protocol (Ethernet) [FER 84]

A token-passing ring [VEL 86]

A hardware reconfigurable look ahead network [VEL 86]

An SNA communication line [DOR 84]

A VLSI Communication chip [JAI 87]

Packet-switched inter-processor communication [UPC 84]

A VAX 11/780 cluster at the hub of a star network [IRA 86]

The impact of communication services on a real-time point-of-sale system
[AND 84]

A failsafe distributed routing protocol in presence of failures [VEL 86]

10) Failures in a Sperry 1100/44 - based system used for real-time calculations

Since these models have been discussed elsewhere they will not be discussed in this report.

3.0 Data Link Control Protocol Model

The one-bit sliding window data link protocol was an interesting example that yieldec some

useful insights. These protocols are important in the analysis of communications sysiems
performance.

Some limitations were found in the ease with which PAWS can be used to model these
types of data link control protocols. However, it was noted that these limitations can be
overcome in a fairly straight-forward manner, and in fact the ES/PAWS simulation tool
under development will overcome most of these.

The protocol is briefly described below, followed by the modeling approach, the model and
some simple simulation results.

3.1 The Protocol

The protocol was chosen from the data link control chapter in Tanenbaum's text
("Computer Networks"), where it is referred to as "protocol 4" [TAN 81]. This protocol
uses a one-bit sliding window to provide full-duplex data transmission in the presence of
message corruption, loss, and duplication. Piggybacked positive ACKs are used for
message acknowledgement. The protocol assumes two stations communicating over a
point-to-point link. Each station consists of a host (message source) and an IMP (network
interface). Each IMP maintains global variables which contain the windowing information.
Every message sent over the link contains a (1-bit) sequence number and the next sequence
number expected from the other side. The latter is essentially an ACK.

3.2 Modeling Approach

The protocol was modeled in a top-down hierarchical fashion io try to match a
communications engineer’s view of the problem rather than a performance analyst's
approach. Thus the top-level GPSM graph is highly intuitive, consisting entirely of source
nodes and submodel calls. Although this is a somewhat inefficient way of modeling the
protocol, it is modular and preserves information hiding.

A limitation of PAWS is its restrictive submodeling facility. The submodeling facility
incorporated in ES/PAWS will have a clean and convenient interface, similar to the

- A4 -

semantics of procedure calls in conventional programming languages. It was discovered
that it is not convenient to define a re-usable library of submodels in PAWS 3.0. For this
reason a collection of models rather than submodels will be delivered to CECOM, as we
believe they will be more useful to CECOM at the present time.

The protocol allows IMPs to accept messages from the hosts only when they have
processed an ACK for a previous message. In Tanenbaum's description the flow control
required to prevent a host from swamping an IMP with messages is assumed to take place
in the host, and is not described. For the purposes of modeling, host-IMP flow control -
was explicitly specified.

3.3 Protocol Model

The protocol model is described with the aid of the top-level GPSM graph (Fig. 1A). The
model is symmetrical in that the functionality of the two communicating entities, A and B,
is identical; they differ only in the data structures they operate upon. (In ES/PAWS it will
be easier to express this similarity using submodel calls, in a fashion similar to calling
library procedures in a conventional programming language). In the followmg description
the operation of side A is described -- side B is similar.

3

-ydexbh (oa@7-doy :1epouw (0d90301d [OIJUOD JUTIT eIeq VI ‘b1 g

2oy gduatien q3s0Yjjeo 2:wg m.‘..uu._:_”,..w
{11 — =] .
Fswig ew
<
stpawd Scuwy
~ F=uag
Sewig Sy yduarired wyecyired 2ziny HALINGE
—{__J¢—0 Tl <« _]

Node sourceA generates méssagcs from the network host A. These are processed in the
host (at callhostA) before being forwarded to the network interface (callimpA). The

submodel called from callhostA essentially models the host-IMP flow control, and its
functionality is described in sec. 3.4.

The IMP handles both outgoing messages from the host as well as incoming messages
from the media. For outgoing messages it performs the windowing function by setting the
1-bit sequence and acknowledgement numbers. It also performs the timeout and
retransmission function, described in sec. 3.5. For incoming messages, the IMP checks to
see if they carry the correct sequence number, ACK, or both. If an ACK is received, it
prevents a timeout as described in sec. 3.5. The received message is then forwarded to
hostA to open the host-IMP flow control.

The key modeling issues are flow control and timeouts, which are discussed below.

3.4 Flow Control

A natural way to implement flow control is via PAWS tokens. Modeling host-IMP flow
control required four ALLOCATE and RELEASE nodes, arranged as in Fig. 1B. Note that
this arrangement does not require transactions to carry the token through the entire model.
Thus the token management function can be encapsulated within this one submodel.

-A=7 -

]Illllllll’lli

- but{spow 10x3U0D MOfd t10o030ad foajuoo Yutt ejea 4t °bra

wyuie eisy

pnoJs-3eul
[Re——ec—e¢
Y SURIL pAdI-yIm vycoyut
Z —— e «—<_1
i
yduito) _ADUIY [A0T4Y 9cuiman '
e g T [

Node Aflowentl initially holds one token. An incoming message obtains the token and,
upon reaching node Aflow, releases it to node Afcntl, thus preventing any new messages
from the host onto the link. An ACK from the other side uses the token at Afcnt] and
releases it at node Af to Aflowcntl, thus allowing any queued messages there onto the link.

The number of tokens placed initially at node Aflowentl is equal to the protocol window
size.

Flow control in communication systems is intended to prevent a fast sendcr‘of messages
from overflowing the capacity of a slow receiver. Two schemes are common. In the first,
the sender produces messages up to a fixed predetermined number and waits for
permission from the receiver to send any more. This is the scheme used in this example.
In the second, the sender continues to send messages until instructed by the receiver (via a
choke packet, XOFF signal, or CTRL-S character) to stop doing so; the sender resumes
upon receiving an explicit signal from the receiver.

In C/PAWS and ES/PAWS it is possible to model both these schemes using two nodes.
The first can be modeled using an ALLOCATE and CREATE node pair, while the second
can be modeled using a SERVICE node and a SET node. Both these mechanisms are quite

general and convenient, so it is not felt necessary to introduce a new node typc for
modeling flow control.

3.5 Timeout

A natural way to specify timeout processing is via delay nodes and PAWS interrupts Tn
Fig. 1C an example of how this can be done is shown (in the actual protocol model this

function is contained in two separate graphs — the non-esséntial details are not shown in
Fig. 10C).

t1000301d {oa3uU0D Nuly eleg OII .wﬁ.m

*hur TOopOU Inoauwyy,

g aple uiodg N jaqnug 12mydoye W yenn o
HHHV‘ JV A‘\ﬂ‘ AV o m———— A,IMlNlIP*\ ———— . .l.1VM..|... ‘tnn.:
UA@)QD -m-_.u_ﬁu /‘Qmuom u_.-ﬂ.ﬂﬂ.._qn— 2augyeas

WF——(— ro——3— - |

Jtemaut)
Inoauwny
190y Ke(apipum ynouqte puesytids £31q39¢ - HryE oy
- «—{J¢ : <« 1

[e——@ e

C T ey RRTNREE) FUERINEE] Rl

- A~10 -

A message arriving at node gplitsend is copied so as to create two identical siblings. At
node sjbrout, one sibling is routed out to the link, while another is routed to a timer to await
an ACK. Atnode saveid the ID of the waiting Transaction is recorded. If the transmitted
sibling correctly reaches the other side an ACK is sent, which reaches node jntrpt. Here
the information saved by node saveid is used to determine which transaction is awaiting the
ACK. Atnode stoptimer the ACK interrupts the timer and routes that transaction to a sink.

If an ACK is not received within the specified Timeout, the waiting transaction leaves node
timer and is again split into two siblings at node gplitsend, in order to cause a
retransmission. This will continue until an ACK is received.

If ameouts are to be specified frequently, a timeout node type, whose semantics have been
carefully defined to include retransmissions of multiple outstanding messages, may be
defined.

3.6 Simulation Results

Each of the two hosts in the model generates messages with an exponential inter-arrjval
time distribution of 20 time units. The cable propagation delay is a constant 5 units. There
is 1.5 ime unit constant processing delay per message, composed of two delays of 0.5
units each at the source destination IMP's (nodes crunch and hostxmit) and 0.5 units for
processing transmission of each message copy (node xmitdelay). There is an 85%
probability that a message traverses the cable without error. Message corruption and loss
account for the rest. Each IMP has a Timeout variable which determines how long it waits
for an ACK before retransmitting the last message. The Timeout variable is the same for
both nodes. The model is simulated for 5000 time units. Although this is a fairly short
simulation run (only about 250 messages are generated per side) it is sufficient to get an
estimate of protocol behavior.

The model was run for 5000 time units with a value of 25 units for the Timeout variable.
The response time from node Ahostin to statistics collection node findsent (Fig. 1C) is

shown as a histogram in Fig. 1D. This appears reasonable given the deterministic
processing delays.

- A-11-

PGE 23 IRA PAWS - ¥3.0.11 (01-08-88: = RESPONSE TIME STATISTICS

FSNNSESENH AHOSTMSG /AMOSTIN (1) 10 AHOSTMSG /EINDSENT (1)

CATEGORY: /MSGA
RESPONSE-TIME
INTERVAL NUMBER IN iIN HISTOGRAM
INTERVAL INTERVAL 0 10 20 30 0 S0 & 70 8 9% 100
0.000 <= X ¢ 3.000 0.000 0.00 K 1
$.000 <= X < 10.000 0.000 0.00 K I
10.000 <= X ¢ 15.000 156.000 70.91 Tk dck ok ok ok ko Ak sk ek Ak I
15.000 <= X ¢ 20.000 2.000 0.91 K« 1
20.000 <= X < xINEINITYX 62.000 28.18 Tidciedokdobokk I
I0TAL: 220.000
SUMMARY

MEAN: 21.316 2ND WOMENT: 683.670
VAR: 229.302 SINDRD REV: 15.143

Fig. 1D Response Time Statistics for Data Link Control Protocol

- A-12 -

3.7 Summary

It seems clear that the key aspects of data link protocols can be modeled in PAWS. This
modeling will become even easier and more convenient in ES/PAWS, which will retain the
declarative and visual programming aspects of PAWS and GPSM, and in addition provide
the convenience and expressiveness of the C programming language.

An important aspect of this model is that it addresses issues such as timeouts, flow control,
and message loss, which occur not only in the data link communications layer but also
other layers of the OSI model.

The model can be extended quite easily to deal with protocols with larger window sizes. If

specialized node types are developed to represent timeouts and flow control, this type of
modeling will become very easy in C/PAWS.

- A-13-

4.0 Switching Network Model

This section describes a model of a switched commuxrications network. The following
sections describe the modeling of various routing algorithms for this network.

The primary objectve of the model is to investigate the effect of routing algorithms on the
performance of circuit-switched networks. However, it should be noted that the
performance issues involved in non-hierarchical routing in circuit-switched networks are
very similar to those involved in routing for packet-switched networks [SCH 87]. Thus by
restricting attention to non-hierarchical routing algorithms, the model can be used for both
circuit-switched and packet-switched networks, possibly with a small amount of
modification.

Since the emphasis is on the feasibility of modeling routing, other network issues, e.g.
congestion control, have been ignored. It seems clear that if routing can be modeled using
PAWS and GPSM, other network layer issues can also be handled. In addition, a data link
protocol model (sec. 3) indicates that features common to several communications layers,
e.g. timeouts and flow control, can be modeled using PAWS and GPSM.

An important aspect of the network example is that it models the effect of failures on
performance. The example also incorporates the effect of repairing failed components.

4.1 Network Model

The network model will be explained with the aid of the top-level GPSM graph (Fig. 2A).
Note that for the purpose of performance analysis a communications network can be
conceptualized basically as messages circulating between network switching nodes and
communications links. In the model, these are represented by the submodels cswitch and
clink respectively. This performance modeling diagram does not represent the network
topology. Itis an abstraction of a general network, where messages continuously travel
from switches to links until they reach the destination host

- A-14 -

-ydeab (onat-dol :19POW YIOMISN POUDITMS vz °*b1a

>

qutodites gountiey

Nuisq1es yoed

[Re———et— e —C]
898601 st aytmen auod{mIM atjen 234N
[e—¢—e¢ A{DT&\BI\@TTD
uctyeurysap mep AU

[e——¢—e¢—

- A-15-

The node msource models the generation of network messages for all hosts in the network.
Messages are generated at a different rate for each host, as determined by a source rates
data vector which is initialized in the PAWS "run" section. The messages generated at
msource only contain the ID of the source host but not that of the destination host. At node
traffic the network connectivity, link delay and traffic probability matrices are read in from
a data file (this is only done once per simulation run). Messages are assigned destination
host ID's based upon the traffic matrix. Thus a message reaching a network switch
(modeled by PAWS node gswitch) carries its source and destination host IDs. At gswitch
the network routing function is carried out. Messages leaving ¢switch carry the ID of the
next switch to which they are being forwarded and the link over which they will be sent.
The amount of delay that the message will experience while traversing this link is also
calculated here, although the actual delay is modeled at node glink.

Messages that reach their destination will leave the model via the sink node destination.
Messages forwarded to other switches enter node ¢link where they will experience delay,
and possibly, loss and corruption, before returning 1o ¢switch. Lost and corrupted
messages leave the model via sink node]osses.

The nodes failures, failpoint and failsink are used for modeling failure. Failure
processing will follow the approach taken in previous IRA studies of failure modeling for
distributed systems [FER 84, VEL 86]. In sections 4.3 to 4.5 several routing algorithms
will be described without reference to failures; the failure transactions essentially enter and
leave the network without having any effect, and can be ignored. In sec. 4.6 a model will
be described that considers the effect of failures; failure processing is discussed in detail
there.

- A-16 -

4.2 Routing Algorithms

The network routing function is encapsulated in the PAWS submodel cswitch. Three
different classes of routing algorithms are described below. These represent very different
types of routing criteria--ranging from minimizing response time to achieving maximum
reliability. We have chosen to implement an instance of each type of algorithm in order to
determine the feasibility of modeling that class. The algorithms modeled are:

1) Static Shortest Path Routing

2) A Distributed Adaptive Algorithm

3) Flooding

4) Static Shortest Path Routing with Failures

The routing algorithms were all run on the same example network [SCH 87]. The network
topology and various parameter vectors are shown in Fig. 2B. In the traffic probability
matrix, entry T (i, j) represents the probability that a message generated at host i has host j
as its destination. The source rate vector was decided upon somewhat arbitrarily. It does
have the effect that with the traffic matrix shown in Fig. 2B, over one fifth of the total
network traffic goes from (source) host 1 to (destination) host 2. N

-A-17 -

Example Network

Circles represent nodes in the network.
Lines respresent bidirectional links, with iink delays.

Source rate vector (arbitrary choice of rates):

Node inter-arrival time for message
'1 10 .
2 2
3
. 40
5 50
6 60
Traffic Probability Matrix, T
ity Matrix to ncde
1 2 3 4 5 6

1 00 05 02 01 00 02
2 01 00 02 01 04 02
from
node 3 02 01 00 01 02 04
4 03 01 02 00 03 0.1
5 03 01 02 03 00 0.1

6 0.1 0.2 0.2 0.4 0.1 0.0

4.3 Static Directory Routing

This is a simple algorithm and one of the most widely used [TAN 81]. Each network
switch maintains a table with one row for each possible destination host. A row gives the
outgoing line (or next switch) that messages for that destination should be forwarded on.
There may be several possible outgoing lines, ranked in order of preference. Thus routing
depends upon the destination host ID, and outgoing lines can be chosen by some metric so
as to optimize performance. Typical metrics include link delay and hop count.

The main advantage of static directory routing is that it is simple to understand and
implement. Typically network managers calculate the routing tables and load them into the
switches manually. Static routing gives good performance if the network topology and
traffic do not change much. The main disadvantage is that the algorithm does not adapt to
changes in traffic.

4.3.1 Shortest Path Trees

In our implementation of static routing each switch chooses the outgoing line that has
minimum delay for each destination host, i.e., link delay is used as the path metric. Notice
that the gptimality principle applies : if the shortest path from switch I to switch K is via
switch J then the shortest path from J to K also falls along the same route. Thus the set of
optimal routes from a source to all destinations forms a tree rooted at the source. We will
call this a shortest path tree. Since failures are not being modeled in this particular
simulation each switch chooses only one outgoing line per destination.

The shortest path trees, with link delay as metric, are shown in Fig. 3A for nodes 1 and 2
of our example network.

-A-19 -

Shortest Path Trees

Network:

Shortest Paths from Node 1 to other nodes

4.3.2 Routing model

The routing function is carried out in the submodel switch (see Fig. 3B). Data messages
enter the token release node Jinkrel where they release access to the communication link
over which they armived. Since messages generated at the host (msource) have not yet
entered the network. they do not have any links to release, and proceed to node croute,
which invokes a FORTRAN program to perform the routing calculation.

- A-21 -

. {oPOW Uo1tMs :Butinod yied 3sarroys orje3s @e ‘Hra

) Is0u0y
na cboull LN g 12pme 2np 2j3n0ld EXE UL S ut
B B T B < e L L ity vord L |
N = fewm Bew
RALL AR
cauntrel

- A-22 -

The routing program expects as input the switch to which the message has arrived, and the
ultimate destination of the message. Depending on the destination the program searches a
routing matrix to determine the next switch to which the message should be forwarded
based upon the shortest path tree for this switch. When the message leaves croute it carries
the IDs of the current switch and the next switch in it's local variables, as well as the
amount of deiay it wili experience in going to the next switch. (Only the amount of the
delay is calculated here--the actual delay occurs in the submodel link). The ;out.ing
program also determines whether the message has reached its ultimate destination, and if
50, sets a local flag in the message.

The data message then experiences a small switching delay at swdel. This delay has an
exponential distribution, to roughly mode! the contention for processing that occurs when
several messages are present at the switch. Since the delay is usually much smaller than the
link delays, it is not modeled in detail. If the message has reached its destination its leaves
the switch via arc tghost. Otherwise, at node golink the message is assigned the actual
communication link number over which it must travel in order to reach the next switch.
Since only one message may travel on any link at any time, at node linkgs the message
contends with other messages which need the same link. The linkqs icon represents an
array of N2 PAWS ALLOCATE nodes, where N is the number of network hosts. There is
one token per ALLOCATE node. A message bound for link i receives a token at }inkgs(i)
and releases it, after it has travelled through ¢link, at node linkrel, allowing the next
message queued at node linkgs (i) access to link i.

In order to aid understanding of the PAWS code, the variables used in this model are
documented in Fig. 3C.

- A-23 -

PAWS local integers

LI{1] : the message source node ID
LI{2] : the message destination ID
LI[3] : current switch ID
LI{4] : nextswitch ID
LI{5] : delay to experience in going to next switch
Li{g] : the communication link number
= (LI [3] - 1) * (number of nodes) + LI [4]

PAWS local booleans

LB[1] : message is to be routed to a link
LB[2) : message has reached destination
LB[3] : message leaves model as a loss

«

Fig. 3C. Static Shortest Path Routing Data Structures

4.3.3 Simulatior Experiments

The shortest path rouring algorithm was simulated for 1000 time units with the source rates
shown in Fig. 2B. The switching delay was assumed to be 0.1 time units. The response
time for all messages generated by all hosts in the network was measured as the time to
travel from msourcs to dstat. Fig. 3D shows the average network response time histogram
calculated by PAWS.

- A=24 -

°AGE 3 [RA PAWS - ¥3.,0.11 ¢(91-08-38) & RESPONSE TIME SIATISTIC

RESPONSES EROM /MSOURCE ¢ 1) 10 /BSTAT (D
CATEGORY: /DATA
RESPONSE-TINE
INTERVAL NUMBER N XN HISTOGRAM
INTERVAL INTERVAL 6 10 0 30 4 S0 60 70 30 W 100
0,000 <= X< 2.000 125.000 49.80 Dok ko kdokdc I
2.000 <= X < 4,900 66.000 26.29 DiikdckidichAdch(I
4.000 <= X ¢ 6.000 35.000 13.94 Lckksdek< [
6,000 <= X < 8.000 12.000 4.78 T I
8.000 <= X < XINEINITY 13.000 3.18 1614 I
T0TAL: 251.000
SUMMARY
MEAN: 2,821 2ND MOMENT: 14.080
VAR: 6.120 STNDRD DEV: 2.474

Pig. 3D Response Time Statistics for Shortest Path Routing

- A-25 -

4.3.4 Variations on Shortest Path Routing

The routing algorithra discussed above uses only one route per source-destinat...1 pair,
which has been pre-computed and fed zs input to the FORTRAN program (statrout.for).

In general there may be more than one route with the same minimum cost between source-
destination pairs. In addition it may be desirable in high traffic situations to distribute some
traffic to links that are lightly loaded, or unloaded, in order to improve performance (e.g. in
the example networ'. the links between nodes 1 and 3, 3 and 4, and ? and 6 do not lie on
any shortest path and hence are unused). Finally, multiple source-de:stination paths are
needed in case link failures can occur.

One approach to distributing the traffic over several routes for each source-destination pair
is to choose one of severa. routes on the basis of a probability assignment (which can be
considered a "load factor”) for each route. Thus routes can be ranked in order of
preference. This approach has in fact been implemented in the FORTRAN program written
for this project. Thus the routing matrix for each switch can contain probabilities assigned
to various switches that an incoming message can be forwarded to in order to proceed to
the destination. This approach was not pursued further as it was clearly within the
capabilities of PAWS and no new insights were expected.)

A more sophisticated version of shortest path routing would combine it with some form of
adaptive routing, e.g. by considering not on'y static quantities such as link delay and hop
counts, but information that is dynamically available e.g., queue lengths at outgoing lines.
This could result in a very effective algorithm that would continue the advantages of
shortest path routing “vith an algorithm such as Hot Potato, discussed in sec. 4.4.

4.3.5 Discussion

One issue associated with shortest path routing is the computation of the shortest paths. In
the current model the shortest paths are computed by the model user by inspection. For a
large network it would be useful to have a (separate) utility that would take a network
connectivity and link delay matrix input and apply, say, Dijkstra's algorithm [SCH 87] to
produce the shortest paths. Such a program could conceivably produce multiple paths,
paths selected by several criteria (e.g., minimum delay, minimum hop, etc.), or by a
combination of criteria.

- A-26 -

Another issue that arises is the specification of source rates. This is a vector of length equal
to the number of nodes in the network. Unlike the traffic and connectivity matrices
however, it cannot be read in from a data input file, but must be specified in the
PAWS/GPSM model itself. This is somewhat tedious, and if done in GPSM, requires that
the model be retranslated to PAWS for each simulation run in which only the source rates
vector is changed.

These issues will be discussed in the enhancement specification.
4.4 Distributed Adaptive Routing

The problem with static directory routing is that it does not adapt to changes in network
traffic. One way to overcome this is to periodically recalculate the routing tables based on
current estimates of traffic. A centralized approach to adaptive routing usually involves
each switch periodically sending its status information (queue lengths, links known to be
down, etc.) to a central routing control center, which recalculates the routing tables and
redistributes them to the switches. This approach has several drawbacks: the cost and
complexity of re-distributing routing tables, the vulnerability of the control center, and the

traffic congestion at the center. It is preferable to adapt to traffic changes using distributed
control.

A class of algorithms known as isolated adaptive algorithms [TAN 81] attempts to let
switches make routing decisions based only on information that they themselves have
gleaned. They do not exchange routing information with other switches, so they are often
simple and cheap to implement; however, they are less likely to produce optimal routes than
true distributed algorithms. Examples of the latter include the distributed algorithms of
Jaffe and Moss [JAF 82] and the work of Tajibnapis [TAJ 77].

- A=27 -

4.4.1 Hot Potato Routing Model

A simple example of an adaptive routing algorithm with decentralized control is called hot
potato [TAN 81]. The idea is simple -- when a message arrives, the switch sends it on the
outgoing line with the shortest queue, without regard to the message destination. Clearly
this algorithm will not perform nearly as well as static shortest path routing. It can be
combined with static routing by making the path metric a function of both link delay and
queue length. We have implemented the simple hot potato algorithm for our network
example, using queue length information that was conveniently available in the PAWS
model.

The switch model for hot potato routing (Fig. 4A) is essentially identical to that for shortest
path routing . The only difference is that the PAWS user node croutg has been replaced by
the COMPUTE node calcroute, which performs the necessary routing calculations using
the PAWS computation syntax and not by invoking a FORTRAN program.

- A-28 -

jllllllllllll'l!'l

*19pOoW Yo3tms tHurjnoy olejod IoH VWY

bra

18040}
N0 shyurtg yut(o2 19pme 9innJoLed 1a.utt
[——7 fE—e—1le——® ———le——— ¢ rYey ¢

gaungies

ut

S|

weaq 100] Juoatss gean TSN et _mﬂg

- A=29 -

The routing calculation uses several PAWS local and global variables in addition to the
ones used for shortest path routing. These are shown in Fig. 4B.

PAWS local integers

Li[1] message source

LI [2] message destination

LI [3] current network switch

LI [4] next network switch

LI [5] link delay to be experienced
LI [6] link number to be travelled

= (LI [3]-1) "6 + LI [4]

PAWS local booleans

LB 1] route message to link
LB 2] message has reached destination
LB [3] message loss

PAWS global integers

mingl minimum queue length
ming link with shortest queue
mini switch corresponding to ming

PAWS global booleans

GB[1] no link between some two switches
GB [2] minimum queue length found
Fig. 4B Significant Data Structures for Hot Potato Routing
When a message arrives at calcroute, the algorithm first checks to see if the destination has

been reached. If so, the message is weated as 1t would be for the shortest path algorithm,
and eventually leaves the model via arc tohost. If not, the algorithm computes the link

- A-30 -

number for each possible outgoing link from this node. If such a link exists in the example
network, the queue length at linkgs for that link is read. This is easy to do because PAWS
COMPUTE nodes allow transactions to access queue lengths at any SERVICE,
ALLOCATE or GETMEM node within the same submodel. The algorithm finds the

outgoing link with the minimum queue length, and assigns the corresponding "next switch"
to the message.

4.4.2 Simulation Results

The hot potato routing algorithm was simulated for 1000 time units with a switch delay of
0.1 units. Average response time statistics for all messages for all source destination pairs
were obtained by specifying msource and dstat as the PAWS response time from- and to-
nodes. The response time histogram calculated by PAWS is shown in Fig. 4C.

- A-31 -

PAGE 26 [RA PAWS - V3.0.11 (01 -08-88) x RESPONSE TIMNE

RESPONSES EROM /RSQURCE (1) 10 /DSTAT D
CATEGORY: /DATA
RESPONSE-TIME
INTERVAL NUMBER IN TN HISTOGRAM
INTERVAL ~ INTERVAL 0 10 20 30 40 50 o0
0.000 <z X ¢ 10.000 77.000 37.20 Lkdedokddok ik ook
10.000 <= X < 20.000 41.000 19.81 Lidkiicdcdori{
20,000 <= X ¢ 30.000 2.000 10.683 Dk
30.000 <= X ¢ 40.000 11.000 b P} Lhi¢
40.00¢ “= X < RINEINITYA 36.000 .05 Doddeihdedeiok<

T0TAL: 207.000

SUMMARY
HEANZ 52.251 ¥ MOMENT: 13333.629
VAR: 10605.468 STNDRD DEV: 102.983

Fig. 4C Response Time Statistics for Hot Potato
Routing Algorithm

-A=32 -

STATISTICS

70 80

%0 100

e oy e

Clearly, static shortest path routing is far superior to hot potato routing as the hot potato
algorithm does not consider the ultimate destination of the message.

4.4.3 Discussion

The hot potato routing algorithm is an example of how PAWS facilities can be used
conveniently for constructing communications models. In this case the queue length
information available from PAWS made modeling of this algorithm very easy. The model
did not require the user to write and debug a FORTRAN program. Instead the high-level
declarative features of the PAWS language were used. In the ES/PAWS tool under

development, not only queue lengths but most model parameters will be available to the
model developer.

This illustrates two approaches to performing calculations within PAWS models. The first
is the approach taken in shortest path routing, which is to do all but the most rudimentary
calculations using FORTRAN programs invoked from PAWS USER nodes. The
advantages of this approach are:

1) the program can be tested in isolation from the simulation model)

2) data can be read from and written to FORTRAN data files without having to
retranslate the model. This provides a degree of isolation between algorithms
and data structures, as data need not be embedded in the model.

3) the user can use a favorite programming language other than FORTRAN, e.g.,
Pascal or C.

4) complex algorithms can be developed using powerful programming languages

5) the resulting model may be more efficient

The second approach is to use as few USER nodes as possible, and to perform all
calculations within PAWS COMPUTE nodes. This requires that model inputs be kept in
PAWS variables and initialized in the "RUN" section. In fact, the hot potato routing
model developed here does just that. The link delays are kept in an array of global reals of
size N2, where N is the number of nodes in the network. This information is used in the
routing algorithm to determine the outgoing links from a switch, and their link delay. It
would be possible to take this one step further and store the wraffic matrix in this way and

- A~33 -

e —————_———— L

replace the traffic USER node in the main model with a COMPUTE node. The advantages
of doing this are:

1) the model is written entirely in the PAWS language; the entire model can be
viewed using GPSM and so is easier to understand

2) the user need not have any knowledge of FORTRAN programming--the high-
level PAWS constructs can be used exclusively

3) Model parameters, e.g., queue lengths, are available directly

These issues are being addressed by the ES/PAWS software under development. They
will be discussed in the enhancement specification.

4.5 Flooding

A simple algorithm that is attractive due to its high reliability is flooding. In one version of
flooding, which we shall call paive flooding, every incoming message is sent out on every h
outgoing line, including the one it arrived on. The message sent back to the switch from
which it just arrived is treated as an acknowledgement at that switch. The version of
flooding implemented in this project is standard flooding, in which incoming messages are
sent autl on every outgoing link except the one they arrived on. A variation of this is called
selective flooding [TAN 81] in which incoming messages are sent out only on those lines
going approximately in the right direction. In all three versions of flooding, various
measures can be taken to damp the large numbers of duplicate packets that will be
produced, e.g. by putting hop counts in the message, so that once a message has traveled a
distance greater than the network diameter it is discarded. Flooding always chooses the
shortest path, since it tries every path.

4.5.1 Routing model

In our implementation of flooding every message generated in the model is assigned a
unique sequence number. This is so that copies of messages that have already been seen
by a switch can be discarded. The sequence number is assigned in the PAWS node
makeone in the main model, which has been changed from a simple CHANGE node to a
COMPUTE node (see Fig. 5A).

- A=34 -

* JOpOW YIOM3ION POTITPOW :burpoold V¥s °b14

AUle|reEy R LY jutodirey calniey P

&= «—{ e] <

£9£350] je3s] YAJLMED aLoaewl I4JENY a3mosiy

[Je——e¢—e¢ —< — L Je———e—{Rle——— ¢]
wopeunys2p jeysp QUITD

{ ——C——— I

Although the flooding algorithm is conceptually quite simple, the performance model is a
little tricky. The main problem is to ensure that the model discards exactly the right number
of duplicates. This is discussed in sec. 4.5.2 below.

For the moment assume that duplicate messages are correctly generated and discarded, and
that this calculation is carried out in the PAWS nodes calcroute and flood of the flooding
switch model (Fig. 5B). The node calcroute determines whether an incoming message has
reached its destination, in which case it eventually leaves the model via arc reached, or
whether the incoming message should be flooded out on the outgoing links, in which case

it proceeds to makecopy.

- A-36 -

*{9poW YyoItms :Hurpootrd €S |

yeysuane
nagaslp uess
<& ———o¢
Eycddoo patdootye
poold
L]
~
reuidao D
L= o
o ebyury aun Adodaxew topr.s e3n04o1ed 1a4quty ut
TG e e e JT@ et e 1l
£dna == .
- Rk fal- =X poyone.
- ————{1¢
4

caunires

The first time the message reaches makecopy it creates zero copies (PAWS siblings), and
proceeds to node flood. Here the second part of the flooding algorithm — copy generation -
is carried out. The original message arriving at flood leaves with the link number of the
link on which a copy should be sent. (The link number is determined in a straightforward
way 5o that a copy is not sent on the link on which the message arrived, and no attempt is
made to send on non-existent links). The original message circulates between makecopy
and flood creating one new copy each time it reaches makecopy. The copies leave the loop
and proceed for processing to node one, while the original leaves the mode! via arc
alicopied when all the necessary copies have been created. Copies undergo some minor
"book-keeping" changes at node gone before competing for the appropriate outgoing link at
linkqs. The link allocation and release is handled exactly as for the shortest path routing
model.

4.5.2 Discarding Duplicates

The generation of copies is quite straightforward, but not the discarding of duplicates. One
attempt to do this is to keep an array of local flags in each message, one per switch. When
switch J receives a message it checks to see if flag J is set in the message. If so the
message has already been seen by this switch, and is discarded. If not, the flag is set so
that any future duplicates will be recognized, and the message is forwarded for the creation
of copies. (When PAWS creates copies of transactions at a SPLIT node, the local flags of
the original transaction are replicated in the copies). Unfortunately, although this scheme
seems intuitively clear, it is not correct. To see this consider the network example. A
message generated at host 1 will be copied and sent to switches 2, 3, and 4. Say the
message routed via switch 2 reaches switch 3 before any of the others do. This message
will have flags 1 and 2 set. Now consider that the message routed via switch 4 arrives,
with flags 1 and 4 set. It will not be recognized as a duplicate.

The problem is that marking messages in this way only ensures that copies that each switch
has itself generated are recognized as duplicates when they circulate through the network
and amve at the same switch again. It does not ensure that copies that have taken different
paths to the switch are recognized as duplicates.

One aim of discarding duplicates is to ensure that the destinaton host only actually receives
one copy of every message destined for it. An attempt to do this is to abandon our first
scheme and instead to generate umique sequence numbers for each message. In this second

- A-38 -

scheme each switch keeps in an array of global variables the last sequence number seen for
each destination. At first it may seem that one would need to keep a list of all the sequence
numbers seen by a given switch. However, in the absence of message failures, it would
seem sufficient to keep only the last one. The argument is to consider messages generated
by host 1 for host 6 in the example network. Say messages with sequence numbers x and
y are generated, in that order. In that case message y follows message x on every outgoing
link. If there are no failures, the messages will reach switches 2, 3, and 4 in this order,
and since switches do not re-order messages, will reach host 6 in the correct order. So it
appears to be sufficient for a host to keep the sequence number of the last message
received, and discard any message received with smaller or the same sequence numbers.

Notice that this scheme preserves end-to-end duplication control: no destination host will
receive duplicate messages, and in that sense the scheme seems correct. However the
scheme does not meet the stronger requirement of flooding, i.e., that no switch in the
network forwards a message that it has seen already. The reason is that at intermediate
switches in the network the message is not forwarded to the host, so duplicates will not be
recognized until they eventually reach the destination switch. A ot of unnecessary traffic
will be generated and the network will eventually overflow. One might think that a way to
overcome this would be to combine schemes 1 and 2, so that intermediate switches would
recognize duplicates. This third scheme will work in the sense that no message duplicates
will circulate in the network forever. However, intermediate switches would only
recognize duplicates that they had seen before, and not those that took different paths to
amive there. Hence scheme 3 wastes the network capacity, so that at high loads the
network will overtlow for loads which it should technically be able to sustain. In fact
when scheme 3 was implemented for the example network with the input rates shown in
Fig. 2B, the simulated network did overflow.

The following scheme is actually the scheme that was implemented for this project. Each
switch maintains a vector containing the last sequence number it received from each source
host. Messages seen from a source with smaller or equal sequence numbers are discarded.
Let us see why scheme 4 works.

First note that the argument given in scheme 2 for needing to keep only the last sequence
number, instead of a list, is only correct if one merely considers messages between a single
source-destination pair. Although messages from a single source arrive at a given
destination in order (by the argument given in scheme 2), it is entirely possible that

- A-39 -

messages generated later in ime (and hence having a greater sequence number) at an
adjacent node will arrive earlier, so that messages from distant nodes would be discarded
incorrectly. Thus scheme 2 fails not only because intermediate switches do not recognize
duplicates, but because some messages may be discarded incorrectly. The correct way to
uniquely identify duplicates is by keeping the sequence number of the last message seen
from a given source host.

Now consider what happens if two copies of a message arrive at a switch by following
different paths. The one that reaches first will have its sequence number entered in the slot
for this source host, and will be flooded on outgoing links. The second message to arrive
will be recognized as a duplicate and will correctly be discarded.

4.5.3 Network Overflow

The network overflows when the maffic input to the network is greater than its processing
capacity. In our example the switching delays are assumed to be small, so the bottleneck is
the link delay. In standard flood routing with an incorrect implementation (scheme 3) the

example network was observed to overflow, and queue lengths at some of the links grew
without bound (at PAWS node linkgs).

It is useful to estimate whether network overflow will occur prior to running any simulation
experiments. For flood routing a simple bottleneck analysis is possible. Instead of
considering standard flooding, suppose naive flooding was used. Naive flooding will
clearly generate more network traffic than standard flooding, but is easier to analyze, and
provides a conservative estimate of the bottlenecks. Under naive flooding each message
generated by a source node will traverse every link twice. If M messages are generated per
time unit, each link will eventually be traversed by M messages in each direction. If the
link capacity of the slowest link is Crin in each direction, network overflow will occur
unless

M < Cmin

In our example messages are generated with inter-arrival times of 10, 20 20, 40, 50 and 60
time units. This corresponds to an average aggregate arrival rate of
M =0.245 messages/ime unit

The slowest link has a delay of 5 units pe. -essage, i.e.,

- A—=40 -

Cmin = 0.2 messages/time unit

Thus under naive flooding the network will overflow. The actual behavior under standard
flooding is hard to analyze, but it is likely that the network will not overflow since M is
relatively close to Cmin. This turns out to be the case.

4.5.4 Simulation Results

The flooding algorithm was simulated for 1000 time units. Under the current
implementation of the model it is not possible to obtain response time histograms. This is
because PAWS generates response time statistics for each original message. However, in
this model the original message is lost once it has generated all the copies it needs to at the
first switch. For this reason it was necessary to calculate the travel time for each message,
including its copies and calculate the net travel time from msource to the PAWS node
reached. This was divided by the throughput count at node rgached. This yielded a mean
response time of 2.67 units.

4.5.5 Discussion

The flooding algorithm raises several interesting points. An obvious consideration is that
due to the way response time statistics are collected in PAWS it is not possible to obtain a
response time histogram for the model as it currently stands. A simple change to the model
to overcome this would be to insert a SPLIT and an ALLOCATE node between msource
and cswitch. One sibling is created at the SPLIT which traverses the network, while the
original message waits at the ALLOCATE. The sibling carries the ID of the waiting
transaction; when it (or a copy) reaches the destination, it interrupts the waiting
transaction, which proceeds to a sink. The response time for the message traversal through
the network can be found as the response time of the waiting transaction. Since this idea
was clearly within the current capabilities cf PAWS it was not implemented.

A mcre interesting issue is raised by the complexity of modeling flooding correctly, as
discussed in sec. 4.5.2. This points out that there needs to be a clear distinction in
C/PAWS between model developers, who would deal with the problems discussed in sec.
4.5.2, and model users, who would be more interested in varying the parameters and

- A=41 -

inputs to the model for design or performance studies. IRA is currently seriously studying
the distinction. Another interesting point is that it is desirable to assist the model developer
in gaining confidence that the model is correct. This aspect of performance modeling is
often neglected [LAW 82]. This issue will be discussed in the enhancement specification.

4.6 Shortest Path Routing With Failures

All the previous models assume there are no failures in the network switches or links. In
this model the effect of failures on static shortest path routing is studied. Failure modeling
has been studied fairly extensively by IRA [FER 84, PAL 85, VEL 86] and IRA clients. In
this project it was decided merely to demonstrate that failures can be modeled quite easily
for the example problem chosen here.

4.6.1 Failure Model

Failures are generated at the node failurg in the main model with an exponential distribution
with a mean specified by the PAWS global variable Mtbf (see Fig. 2A). At node fajlpoint
in the main model each failure transaction is assigned the switch (or link) that it is going to
cause to fail. To simplify the following description assume that only switches can fail;
links are handled similarly. It is assumed that all switches fail equally often. Assume
switch i has failed. The failure transaction then enters submodel switch (see Fig. 6A) and
proceeds to compute node setfail, where it sets a global flag indicating that switch i has
failed. The failure transaction then waits at TTR (i) for a time with an exponential
distribution with mean Mttr, which represents the mean time to repair the switch. At the
end of this time the failure transaction clears the failure flag (¢learfail) and leaves the model.

- A—42 -

Inn

Jrwned

G 7 e

33—
. [Te4IER]D dil 1124398
—J¢e— & «—{)¢ e
SlIB4paRY 1e,
$601)
IV. - V
[1e4ms
311 01
ﬂ.n.:.—”ummu.— —ﬁ“h*s’m
sbyutg qurn? 12pMme LA R ainoan 1aaqutg g}
WInDTI‘ITIﬁuTTlA:‘U?XlTHHm@llP«LTa P ||

Soru

ey

- A-43 -

Data messages that arrive at switch i undergo the usual shortest path routing calculation
(calcroute), and check to see if the current switch has failed at node ¢chkfa‘] (The switch
may also fail while the message is being processsd. This is checked at node golink). If so,
the message proceeds to the ith service node TTR (1), where it waits in the queue behind the
failure transaction that caused switch i to fail. Note that in this way messages that arrive in
the middle of a switch repair only wait for the remaining time to wepair the switch. After
the failure ransaction leaves, the message waits at TTR (i) for a time equal to the mean time
to retransmit the message, Mtirexmit. (It is assumed that some other network layer is
responsible for actually generating retransmissions. In this model the performance impact
of retransmissions is modeled by this extra processing delay). There is a slight inaccuracy
in the modet here in that a new failure arriving at switch i would have to wait for
retransmissions to complete before bringing the switch down. However, since Mttrexmit
1s much less than Mtbf, and the probability of the same switch failing twice in a row is low,
this scenario is ignored. The data messages are reinitialized at rexmit before being fed back
into this switch at node linkrel.

The failure of links can be modeled in a completely analogous way. Since this is clearly
within the capabilities of PAWS, and since failure modeling has already been studied so
extensively by IRA, link failure was not modeled for this project, as it was ot feit that any
new insights were to be gained by doing so.

4.6.2 Simulation Experiments

The model was run for 1000 time units using exactly the same parameters as in sec. 4.3.3.
The following values were used:

Mitbf 100 time units
Mur 25 dme units
Mtrexmit 3 tme units

The average response time distribution histogram computed by PAWS is shown in Fig.
6B.

- A—44 -

PAGE 28 IRA PANS - V3.0.11 (01 -08-88) % RESPONSE TIME STIATISTICS

RESPONSES EROM /NSOURCE ¢ 1) 10 /DSTAT (D
CATEGORY: /DATA
RESPONSE-TINE
INTERVAL NUMBER [N N HISTOGRAN

INTERVAL INTERVAL 0 10 20 0 4 35 20 7 3 3 100

0,000 (= X ¢ 2.000 §97.000 39.35 Thk ik k< [

2.000 <= X < 4.000 76.000 34.35 Uickeck ek ook ik [

4,000 <= X < 6.000 30.000 13.64 hdcksdck< I

6,000 <= X ¢ 8.000 13.000 3.91 16 4 I

8.000 <= X < AINFINITYA 14.000 6.36 i< [

T0TAL: 220.000

MEAN: 3.603 IND MOMENT: 58.801
VAR: 45.819 SINDRD DEV: 6.769

Fig. 6B Response Time Statistics for Shortest Path
Routing with Failures

- A—45 -

4.6.3 Adaptive Shortest Path Routing

The model discussed in sec. 4.6.1 considers the effect of failures when a static shortest
path routing algorithm is used. We now consider an adaptive shortest path algorithm
which bypasses a failed switch. The GPSM graph for the switch submodel of this new
model is shown in Fig. 6C.

- A—46 -

{REN

IO dll

ST,

|

R Aiwt R

1isd e oy o B meen

LN) PO IR

Ay aa

[Ted s 50

{hins b g TS IE: | TS

w_, _ i

Jred jyo

N X L)k SN
£

Leesdaguatiban [EEA B U ER]

) - 4
S TTRORNTE

the oL

L IS
(O WA

. ok i [

SRl W L S | I 1135

-gaanijed JO aouasaid 9ay3 uy burinoy eay3depy 103 T9POW YO3ITMS D9 °brd

16 jus

EEXIATCIE

AR (a0 g

.- F:,n .,Aln .

—_— . e,

=FY

S 21 K T I T U

LIRS

"

-A-47 -

Consider switch K in the network. When there are no failures, messages proceed through
the switch exactly as described in sec. 4.6.1. However, the switch behavior is more
complex when failures (and repairs) occur.

When switch K fails

1) host K is isolated from the rest of the network. Messages from host K (new or

those already in process) proceed via arcs Jocalfail to wait at node TTR for the
failure to be repaired.

2) messages from an adjacent switch J at switch K (i.e., those already in process)
would, in the real network, be lost. In the model they proceed via arcs
remotefail to wait at seexmit for a time that includes:

a) time for switch J to detect the failure, and
b) time for switch J to retransmit the message.

The messages are modified at lastswitch so that when they .each groyte they appear
to have just arrived at switch J, which, having detected that switch K has failed,
assigns them an alternate route that bypasses switch K. This routing calculation can
be done using the sophisticated loop-free routing algorithm described in [JAF 82].

3) new messages arriving at switch J that would have been routed through K are
also assigned the alternate route.

When switch K is repaired:

1) host K messages wait at TTR a further time Mitrexmit before proceeding
through node rexmit back into switch K
2) adjacent switches revert to routing messages via switch K .

This algorithm adapts to the failure of switches. The model realistically captures the
following effects of a switch failure.

a) the increase in message delays
b) the increase in traffic at adjacent switches

- A—48 -

c) the isolation of a host from a network when its IMP
(switch) fails, and the long delays that result

d) a local error control strategy, where re-
routing decisions are made by intermediate switches
rather than by the source host

Notice that this model assumes there is no delay between a switch failure or repair
occurring and this occurrence being detected by other switches in the network. In that
sense, this model does not consider the transient effects of failures.

This points out an interesting aspect of failure modeling. The system behavior when a
failure occurs can be characterized as consisting of three phases. In the first phase, the
component has failed but adjacent components are not aware of the failure. They will
experience a timeout while waiting for an acknowledgement, and will retransmit a copy of
the message via the original route, i.e., to the failed component. In phase 2 (some of) the
adjacent components will become aware of the failure, and will propagate this information
to the rest of the network. Depending on the error detection scheme used, this phase may
or may not take substantial time and involve generation of additional system messages. In
phase 3, all active components of the network are aware of the failure and messages are re-
routed as appropriate. In phase 3 a form of "failure steady state" has been reached while
the first two phases represent transient response.

It is expected that the performance degradation in phase 3 is due mainly to operating the
system with depleted resources. Thus messages may have to take longer routes to reach
their destinations, and there will be additional congestion at network switches. In phase 1,
on the other hand, performance degradation is due mainly to the timeout and retransmission
of messages. This will increase link and switch traffic. In the scheme described here,
where error conwrol is carried out between adjacent switches, there will be increased traffic
between the failed component and adjacent switches. The performance degradation in
phase 2 may include the effects of increased traffic due to retansmissions for some
switches, longer delays due to depleted resources for switches aware of the failure, and
additional traffic due to system messages that propagate information of the failure.
However, depending on the error detection scheme used, phase 2 may be short-lived, and
the additional system traffic may be small.

- A—49 -

The model constructed for static routing in sec. 4.6.1 can be compared with the adaptive
routing model in this light. The former model corresponds to phase 1 of system behavior
when the system adapts to failures, while the latter model corresponds to phase 3. In that
sense the model of sec. 4.6.1 is more conservative than the model discussed here, and can
be used to determine whether a failure would cause unacceptably poor performance or
violate some network real-time constraint.

It is clear from the switch model in Fig. 6C that adaptive routing can be modeled using
PAWS; in fact the GPSM graph itself only requires some minor modifications. For this
reason this model was not actually constructed, as it appeared that it was clearly within the
capabilities of PAWS.

4.6.4 Discussion

Failure modeling has been discussed at length in {FER 84, PAL 85, VEL 86] and also in
various proprietary technical reports prepared by IRA clients. Two points that can be
gleaned from the experience gained in this project are discussed bnefly here. The firstis
that this model treats the occurrence of failures (and repairs) as a process independent of the
occurrence of data messages. This seems to be more realistic than simply causing data
messages to fail with a certain probability because:

1) in the latter case one should use the conditional probability of failure, ie., the
probability of failure given that a message has been generated.

2) failure rate measurements are often done by measuring the occurrence of
failures as continuous bit streams traverse a component. This provides an
estimate of the unconditional probability of failure.

The second point raised by this model is the possibility of introducing some high-level
facilities for modeling failures in C/PAWS. This is discussed in the enhancement
specification.

- A-50 -

5.0 Communications Switch Model

The switching element model studies the behavior of a switch in a circuit-switched
network. The switch receives call requests from stations connected to it, and attempts to
assign outgoing lines to satisfy these requests. Eventually all outgoing lines are allocated,
and further incoming requests are called "lost calls”. Circuit switches either discard these
requests (lost calls blocked) or queue them internally (lost calls delaved) [HAM 86]. The
performance metric of interest is the blocking probability in the former case and the connect
time in the latter. This model estimates connect time for a simple queued mode (lost calls
delayed) circuit switch.

Since the object of the model is not to study routing, it is assumed that the switch is directly
connected to every switch in the network. In particular, there are N links between switch
A, the switch of interest, and switch B. There are S stations which forward call requests to
switch A via local loops, dedicated links between the station and the switch. The call
processing scenario is also shown in Fig. 7A.

- A=51 -

Network:

Stations Switch Switch

N links
O——=——"-0

local
loops
Call Processing:
S A) B
h 1 ® send : connect
phase request o > ¢
start to answer
phase 2 o = send o < ®
° data > o
clear disconnect
phase3 e Sown »> o > °

Fig. 7A. Call Processing Scenario

A station S sends a send request message to switch A in an attempt to connect with switch
B. When a line becomes available, a connect message is forwarded to switch B, which
responds with an gnswer message. Switch A then sends a start-to-send message to S,
which begins the actual data (or voice or text) transmission. At the end of the transaction S
sends a clear down message to A, which sends a djsconpect to B. The ringing and
response at switch B's station is ignored [SCH 87].

- A-52 -

The connect time for a message from station S is the time from when station S sends a send
request to the time it receives a start-to-send. The hold time for a call is the amount of time
a link is held for that call, and equals the time from the connect message being sent from A
until the disconnect message is processed at B.

5.1 Switch Model

Each of the control messages is modeled as a constant time delay in the model (nodes
sendreq, connect, answer, startsend, ¢leardown, disconnect), shown in Fig. 7B.

- A-53 -

’

19POW U»3ITMS suotiedtunumod dL °bTd

18Uty (tespus
sydosin IDEI‘IV!I.’.\VMU
109uu0actp budelsere eyep pceydastp umopae2(d
ayydoastip cydsue eydastp
qQUYIIAE 123UU02 sbyutg YYOItME boJspuas baitie2
P e ——PHe—TIE At —Pe——e—
o ® h eydbau v &2 sydbau —
agnydeue Jomeue
syydbady A sydeur lv_..t_&

The three phases of call processing are represented by arcs reqphs, ansphs, and discphs,
and correspond to PAWS transaction phases 1, 2 and 3. The single server queues switchA
and switchB represent the contention for processing at each switch. The single
ALLOCATE node linkgs contains N tokens -- one per outgoing link. Lost calls are queued
at Jinkgs. Links are released at the end of a call at node linkrel, while the duration of a call
itself is assumed to have an exponential distribution, modeled a node data.

Calls in the request phase go from callreq to switchB where they wait. After processing at
B the calls are now in the answer phase, and circulate via agnswer and switchA to startsend.
Calls that are in the disconnect phase leave data and proceed by nodes switchA and
disconnect to switchB, and eventually leave the model via gndcall.

5.2 Simulation Experiments

The queued node circuit switch was simulated for 10,000 time units using the same
parameters as in [SCH 87]. These arc showa in Fig. 7C, along with a histogram of the
average connect time, i.e., the response time for messages going from callreq to startsend.
Messages were generated with an exponentially distributed inter-arrival time Trequests. All
control messages were assumed to have the same constant delay (Tsendreq = Tanswer =
Tstartsend = TCD = Tdisconnect = 0.091) except for the connect message, which was
assumed to have a much larger delay as it carries substantially more information (Tconnect
=(0.91). Data messages were assumed to experience a delay Tdata exponenually
distributed with a mean of 9.1 units. The processing time of the switches was very close to
zero. With these assumptions the average connect time was found to be 1.76 units, which
agrees closely with the value obtained from an analytic model: 1.7 units (SCH 87].

- A-55 -

6 1l I%A PAWS - V3.0.11 (Q1-08-~8") % RESPONSE TIHM

(4}]

SSPONSES EROM /CALLREG ¢ 1) 10 /STARTSEND (1)
CATEGORY: /REQ
RESPONSE-TIME
\ INTEKVAL NUMBER IN I IN HISTOGRAN
INTERVAL INTERVAL 0 10 20 30 3 30 &0 70 30
0.000 <= % 0.500 0.000 0.00 I
0.500 <= X 1.000 0.000 0.00 I¢
1.000 <= X ¢ 1.500 5466..000 82.27 Tk A AR AR RR R R kA A A AKARS
1.500 <= X 2.000 195.000 2.93 Ta¢
2.000 <= X < RINFINITYA 983.000 14.80 Tk <
TOTAL: 6644.000
SUMMARY
HEAN: 1,757 24D MOMENT: 5.745
VAR: 2.659 STNDRD DEV: 1.631
MES OF SCALARS
/NUNLTNKS = 10
/TREQUESIS = 1.500
JISENDREQ = 0.6
/ICOMIECT = 0.910
JIANSVER = 0.091
TTDATA z 9.100
/10D = 0.091 oo
"’ /IDATACD = 9.191
/TSTARTSEND = 0.091
/TDISCONNEC = 0.091
/ISUITCHA = 0.010
/TSWITCHB = 0.010

Tig. 7C Connect Time Statistics for Queued Mode
Circuit Switch

- A=56 -

STATISTICS

90 10¢

T g 4 g P

5.3 Discussion

This model is a simple but fairly useful simulation of queued mode call processing for
communication between two network switches. It is quite easy to generalize to the case
where there are M switches with a different number of links between switch A and other
switches by using arrays of SERVICE and ALLOCATE model. Since this can clearly be
done within PAWS it was not pursued.

An interesting point is that to be accurate in the case where there is more than one switch to
which switch A is connected, the "background" traffic in the network needs to be
simulated. The background traffic represents the load at switchA and switchB due to call
processing for calls between switch A and other switches, and switch B and other
switches. One approach would be to model this traffic precisely using arrays of SOURCE
and ALL.OCATE nodes, one per source—destination pair. There is a better approach.
Since the call processing scenario is deterministic, the background processing can be
calculated quite accura'ely for a certain network node, and fed as transactions that interfere
with A-B communicat on at nodes switchA and switch B. This will give a more realistic
estimate of network benavior, without the complexity of detailed circulation.

-

- A=57 -

6.0 Conclusions

The modeling and experimental evaluation task oi this phase I project has demonstrated that
it is feasible to model many aspects of communications systems using PAWS. Several
issues were raised during this task, and some limitations were found in PAWS, many of
which will be overcome in ES/PAWS. These issues will be discussed in detail in the
enhancements specification.

- A-58 -

References

AND 84
G. E. Anderson "The Coordinated Use of Five Performance Evaluation
Methodologies", Communications of the ACM, Vol. 27, no. 2, 1984,

BRO 88
J. C. Browne, P. Jain, D. M. Neuse and M. Esslinger, "ES/PAWS ~ A System

Level Design Aid," submitted for publication in Proceedings of the Design
Automation Conference, June, 1988.

CON 86
Customer confidentdal document. The model involves a Sperry 1100/44 computer
system with multiple command, arithmetic and peripheral processors used for real-
time computations. Permission is being sought to disclose this information.

DOR 84
Vladimir Dorfman, "SNA Communication Line Performance Analysis”, Fujitsu
Systems of America, Technical Report 92-00024, July, 1984 (proprietary).

FER 84

V. Femnandes, J. C. Browne, D. Neuse, and R. Velpuri, "Some Performance
Models of Distributed Systems"

Conference, Dec., 1984.

HAM 86

J. L. Hammond and P. I. P. Q'Reilly, Performance Analysis of Local Computer
Networks, Addison-Wesley, 1986.

IRA 86

"PAWS Performance Models of a Computer Network Hub", Information Research
Associates, Internal Document, 1986.

IRA 87a

"~formation Research Associates, Performance Apalyst's Workbench System
(PAWS) User's Mapual, 1987.

IRA 87b

Information Research Associates, Graphical Programming of Simulation Models
(GPSM) User's Manual, 1987.

JAF 82

M. Jaffe and F. H. Moss, "A Responsive Distributed Routing Algorithm for

Computer Networks", IEEE Trans, On Comm., Vol. COM-30 no. 7, pp. 1758-
1762, July 1982.

-

JAL 87
Prem Jain, " Architecture Design of a VLSI Chip Using PAWS/GPSM", Technical
Report, Informaton Research Associates, July 1987.

- A-59 -

.. Y —

LAW 82

Ag. M. Law and W. D. Kewon, Simulation Modeling and Analysis, McGraw-Hill,
1982

NAYV 87

United States Navy Contract No. N60021-86-C-0145, High-Level Simulation of
Electronic Systems, 1987.

PAL 85

Annette Palmer, J. C. Browne, J. Silverman, A. Tripathi, and R. Velpuri, "A
Performance Model of a Fault-Tolerant Distributed System for Evaluating

Reliability Mechanisms”, Proceedings of the CMG XVI International Conference,
1985.

SCH 87
Mischa Schwartz,
Apalysis, Addison-Wesley, May 1987.

TAI 77

W. D. Tajibnapis, "A Correctness Proof of a Topology Information Maintenance

Protocol for Distributed Computer Networks”, Comm. ACM, vol. 20, pp. 477-
485, July 1977.

TAN 81
Andrew Tanenbaum, Computer Networks, Prentice-Hall, 1981.

UPC 84
E. Upchurch, "Modeling Packet-Switched Interprocessor Communications”,
Proceedings of the 15th Annual Medeling and Simulation Conference,

University
of Pittsburgh, 1984.

VEL 86

Rajkumar Velpuri, "Performance Study of Zeus Distributed System with Different
Cormnunicé:ation Networks", M. S. Thesis, The University of Texas at Austin,
May, 1986.

- A-80 -

Appendix B

C/PAWS Enhancement Specification

1.0
2.0
3.0

4.0

5.0

6.C

Contents

DT OQUCTION ettt cae e e s et e s e saseertesesess e s b es s aassa e s s be e s s e sene s seaseabenesanes B1
Summary of Proposed Enhancements.......coeeimnneescnnnnesisnnceninenenene B2
User Interface oo e as e st e e bt B4
3.1 Model User Interface versus Model Developer Interface.................. B4
3.2 FOrmS @nd MENUS.....cccoereereererieccrrtcncsinsssessnisssssssssssssmesssessassssnsnsassassess B4
3.3 GraphiCal INerface........cceeeeeriecnesesnerisinnesrseestsese e ssssse st sns s sssaesssnss s B8
3.4 Graphical QUIPULccoerrieceersrsenrcrmiisiisssse e sn s s s sssnsasssenassssssnsnnass B10
3.5 Network TOPOIOGY.....cccereerrreeesemrerrmresestsiestesssssensssessesnssesssassnsssssananssess B10
Modeling MethodolOgycccvereeervereerermninisinesisienesnstntesstrassssessssessesasanasones B11
4.1 Submodels and LiDranes..........cccevviriviinnenicinninnncensimsssesnresseessessns B11
4.2 C FUNCHON LIDIANY c.occeeeeerreecesreeniniiicnciesssncenensessssssssssssssesnesssssassses B12
4.3 Integrity Constraints and Reasonableness Checks...........ccccenueeee B12

4.3.1 Node and Transaction State Integrityccooeeenerncerrcnncnnes B12

4.3.2 StatiStiCS INEGMLY ..ccceceeereeriinirircsestesenrene e sssnsn s nsaesasssesnsnanses B13

4.3.3 SUbMOdE! INTEGIILY ..c.cveeereeccrrecsiinntccsc e srasressess s e snanans B13

4.3.4 Reasonableness CheckKS ... cnnissssessnens ~..B13
4.4 StatistiCsS REQUESEScvceeeeecrrrtrisisincnsisiensisseseesnssassssassssnessssnssssnass B14
Communications Systems FEALUTESccuuvrcreeirmereersnareeeesnisissaneneans B15
5.1 Timeout ProCaSSING.....ccccererrireriseiintisneseiseessnssaessesasessssssasassssssassaeess B15
5.2 FIOW COMIOL i ceceecerrcerressncsessstsinssssessnessassesssssssssnsssasssesaassesasas B18
5.3 Routing AIgorithm ULIlItIES ... covveeeeeieetecere e B18
5.4 Analytic Bottleneck AnalysSiS......ccovermeeiniennnerinnnnionnnecsesssnssenennenes B19
5.5 Hierarchical SIMUIAtION.......ceicercrrirecesnii e B19

5.5.1 DEIINILION ettt ettt e sasss s s sssae s eaan s B20

5.5.2 General APProa@chceeemerinmiinninsesnssssessseresssssessssesesesessans B20

5.5.3 A SIMPIE EXAMPIE vt B21
Language EnhanCemMENTS.cccercimrrenirmniensstsiennsstsesesessesesessessssnsiasnesons B22
6.1 Failure Modeling Methodologycccerrmeinmieerieinresteenret e B22
6.2 Interrupt Resumption NOUES ...ttt e B23
6.3 FORK and JOIN CONSITUCTS.....ccceereecreeirieriicrrisiisisiesissessteississsesennas B24

6.4 Source Node Control

Contents (Cont'd)

T 0 CONCIUSIONS cvrrerirs crcearetsasmssasaassssnassecssasssaamssass st st s sast st s sttt e00

References

...

CECOM COMMUNICATIONS SYSTEMS MODELING PROJECT PHASE |
C/PAWS ENHANCEMENT SPECIFICATION

1.0 Introduction

This report discusses the features and enhancements required in C/PAWS in order to make
performance modeling of Army comumunications systems easier and more efficient.
C/PAWS will be based on IRA's existing simulation products PAWS and GPSM [IRA
87a, IRA 87b], and more directly on ES/PAWS [BRO 88], a top-down design tool for
electronic systems being developed for the Navy.

The object of this Phase I study is to investigate the feasibility of using a simulation tool
based cn PAWS and GPSM to model the Army's communications systems. This Phase I
study was accomplished through discussions with CECOM personnel, study of the
CECOM communications systems literature, constructing prototype models of some
representative Army communications systems, protocols and algorithms [IRA 88], and by
drawing upon IRA's previous experience in this area [FER 84, PAL 85, VEL 86]. This
enhancement specification discusses the many issues raised by this investigation, and how
they relate to the feasibility of using PAWS/GPSM to model Army commur’ zations
systems. An attempt has been made to be as specific as possible when disc -ssing these
issues while avoiding placing unnecessary constraints on the C/PAWS implementation to
be carried out in Phase II. Where possible the high-level issues have been discussed in
detail, and some alternative implementation strategies suggested, rather than choosing one
implementation. technique and specifying it in fine detail. The object is to discuss the
feasibility of using PAWS and GPSM, rather than to specify an implementation of
C/PAWS. The detailed technical implementation decisions will be the focus of the early
stages of Phase 1I.

The following sections are broadly classified into the enhancement issues relating to the
user interface, modeling methodology, language enhancements, and communications
systems features. Many of the enhancements desired in C/PAWS will in fact be available
with the ES/PAWS system under development. The following section summarizes the
enhancements discussed in this report.

-B-1 -

2.0 Summary of Proposed Enhancements

ES/PAWS and C/PAWS will be more flexible and powerful than the currently existing
PAWS software, and in particular will incorporate the expressiveness of the C
programming language. Through the use of the highly user-friendly graphical interface,
GPSM, and the use of libraries of submodels and procedures, a user will be able to
simulate complex commuications systems without needing, in general, to actualiy write
code. Creating and maintaining the submodels and associated procedures, however, will
require some familiarity with ES/PAWS syntax; this would be carried out by a model
developer rather than a model user (see sec. 3.1).

Using C/PAWS the user will be able to obtain detailed simulation results; these results will
then be post-processed by other software packages to display the results of a single
simulation run graphically (such as histograms of response times), as well as the results of
several simulation runs (such as variations in response time as the offered load is increased
upon each new run).

Some features of ES/PAWS particularly useful for communications modeling are:

+ access to the C language
(data structures, expressions, functions, etc.)
* Macro pre-processor
* submodel parameters
« finite-state macnines
* enhanced version of GPSM, including:
* structured input facilitly (SIF)
» graph !ibrary facility
» scrolling of GPSM graphs
* improved on-line help
» critique of GPSM graphs

-B=2-

The proposed specific C/PAWS enhancements include:

1) Forms and menus for the model user interface

2) User-defined icons for specialized components

3) Convenient specification of statistics collection, including statistics involving
submodels

4) Processing of simulation output for graphical display

5) A TIMEOUT node type for modeling communications protocol features

6) An Interrupt Resume node type for making failure modeling easier. This fits into an
overall failure modeling methodology

7) Libraries of C functions for analytic bottleneck analysis and routing algorithm
calculatons '

8) Libraries of re-usable submodels encapsulating common communications subsystems

9) Specification of integrity constraints and reasonableness checks for nodes, transaction
states, submodels and simulation results

10) More flexible FORK and JOIN constructs

11) Explicit control of the generation of transactions at SOURCE nodes, allowing a user to
control a simulation run more closely ‘)

12) Support for hierarchical simulation

3.0 User Interface

GPSM currently provides a highly friendly and intuitive interface to PAWS. The interface
to C/PAWS wil! be made even more powerful and easy 1o use, as outlined below. Many of
the suggested enhancements are currently plarined or being implemented as part of ongoing
work for ES/PAWS and other IRA projects.

3.1 Model User Interface versus Model Developer Interface

GPSM and ES/PAWS provide an excellent interface for the model developer. A model
developer requires knowledge of the PAWS language syntax and some programming skill.
The everyday user of a model, however, may be someone such as a communications
engineer, network capacity planner, or in general someone other than the model developer.
A model user is someone with technical expertise in the area of communications systems
who is typically concerned with obtaining simulation results for design or perfermance
evaluation purposes. This is particularly true in the area of communications systems where
experts with highly specialized knowledge of communications may not be familiar with
programming. Such a user may not wish to see the GPSM or C/PAWS implementations of
various communications system components.)

This section discusses C/PAWS enhancements that are aimed primarily at a model user.
Later sections discuss enhancements aimed primarily at a model developer.

3.2 Forms and Menus

An ideal interface for the model user would consist of standard forms and menus. These
could prompt the user for communications systems parameters and configurations. This
feature not only provides convenience but also reduces user errors.

The form or menu template itself can be created for a model by the model developer, thus
allowing developers (such as Cecom or its consultants) to provide customized model
interfaces for their users.. One approach to implement this is to allow C/PAWS to invoke
commercially available forms management software package. There are a wide varnety of
such forms managers available in the environments where C/PAWS will run.

An alternative implementation is to use IRA's EDGE gzraphical package and SIF (Structured
Input Facility) to provide a superior, customized facility. An example of a SIF form for the
communications switch model developed for this project is shown in Fig. 1. The user may
input switch parameters from a sub-form (Fig. 2), and choose between blocked and
delayed calls from 2 menu. We propose to use EDGE and SIF for this purpose during
Phase II.

e —

Crmmunicatinns T ton Mot

Cantral Message Lengths

[Sercs Request: IR Star: Senc: NN
Connec=: IR Clear Ooun: NS
Ansuer: B Oisconnect: IR
Length of Oata Message: EEEN
Switen Perazetacs: W

Figure 1. Example SIF Form

-B—6 -

Commyunicatians Tt tch Madel

Contral Message Langths

S trh Parametera

guffers: TN

<2t Calls

Jutgoing

i|Sena Request: JHE Star: Senc: IRER|

‘Canmc‘.: Claar Jown: NN
| Arswer: EE
1

O1iscannect: _l

Lires: _I'
i

Figure 2. SIF Form with a Sub-Form and a Menu Open

-B-7-

3.3 Graphical Interface

It is desirable to allow the user of the simulation system to create meaningful icons, e.g.,
representing switches, stations etc., and associate icons with submodels representing those
system components. This capability will be provided by applying the submodel
class/instance concept in ES/PAWS. A user will be allowed o create a specialized icon to
represent a submodel (or node) class. This icon will replace the submodel call node in a
GPSM graph. Once created, these application-specific icons for submodels could be
applied by all users. Each instance of the user icon will have parameters (instance
variables) that can be filled in independently by a user.

The capability for a user to define a specialized icon already exists in the palette editor
available with EDGE, the graphics software upon which GPSM is based. Examples of
user-defined icons are shown in Fig. 3. The palette editor allows a user not only to draw
the icon but specify it's graphical characteristics, e.g., the entry and exit points, the flipping
operations that are allowed on it, etc. This facility can be extended so that:

1) A usercan create a specialized icon for a GPSM submodel class that will
take the place of the call node for that submodel. .

2) A usercan conveniently specify the parameters of a particular instance
of a user-defined icon.

tes of User-Defined Icons

Xamo

—

“___ggf

3.4 Graphical Output

PAWS currently provides graphical output by allowing histograms of various quantities to
be displayed, e.g., response times, queue lengths etc., within a single simulation run. Itis
desirable to provide a more powerful facility to the user, that will allow the graphical output
of simulation results across several simulation runs, in terms of line graphs, bar graphs etc.
However, it does not seem appropriate for IRA to expend effort in developing the actual
graph-drawing software, given the many high quality graph packages commercially
available. We propose to store the simulation output in a standard format. A separate
program can be written to convert the simulation output to the input format of the user's
chosen graph package. IRA proposes to provide such a program for one such
environment to the Army, as part of the Phase II effort. Conversion programs for other
¢nvironments can be developed either by the Army or contracted out.

The benefits are to:
1) make the graphical display of statistics from a single run easier,

2) store statistics from a single sirnulation run in a form that is convenient
for both machines and humans to read,

3) take statistics from several simulation runs and display graphs of key
quantities versus changes that occur in model parameters between the
simulation runs (or versus simulation number), and

4) allow the user to specify the type and detail desired in the graph.
3.5 Network Topology

The user should be able to construct 2 model that reads in the network topology from a
database. It will be useful to provide a facility that will output a network topology graph
constructed from a user-specified topology table. Such a graph will be valuable for
providing an intuitive feel for the network to be modeled as well as for visually verfiying
that the topology data is correct.

- B-10 -

4.0 Modeling Methodology

Communications systems are typically built up out of standard hardware and software
components. To exploit this replication, our approach is to allow a user to build a
parametrized submodel representing a certain component of the system, and store it in a
library. When needed, a submodel can be extracted from the hibrary and the appropriate
parameters filled in by the user. This approach permits rapid construction of performance
models, allowing the user to build upon previous work, and makes it easy to answer "what
if* types of questions. In addition to the submodels, certain commonly-used algorithms
can also be stored, in a parametrized fashion, and incorporated as needed, e.g., routing
aleorithms for circuit-switched networks.

The tollowing sections deal with enhancements to C/PAWS that will help the model
developer to adopt a powerful modeling methodology.

4.1 Submodels and Libraries

We have found that it is difficult to verify the correctness of models of communications
systems, largely due to the complexity of the communications systems themselves. To
manage this complexity, it is essential to exploit the natural layered aspect of
communications systems by developing hierarchical performance models. A step further is
to re-use the models for common communications subsystems. The model developer will
then have a library of communications submodels that will substantially reduce the
modeling effort.

Unlike PAWS 3, the submodeling facilities in C/PAWS will provide convenient parameter-
passing facilities similar in power to those for procedure calls in conventional programming

languages. This will provide the modularity and information-hiding needed for model
reusability.

An important addition to C/PAWS is a versatile and general-purpose library facility,
comparable in power to those available for programming languages. A library facility for
submodels will be available that:

1) allows convenient storage and retrieval of complete submodels of arbitrary size,

- B-11-

2) allows a user to specify a library by name as input to a C/PAWS compilation,
and

3) allows a library to be searched sequentially, in order, so that external references
in the main model can be resolved.

Submodels such as our Ethernet model [FER 84] and a token ring model [VEL 86] would
be suitable for inclusion in a communications submodel library.

4.2 C Function Library

Certain common aspects of communications systems are better captured using programs
written in a high-level language rather than submodels. An example is a set of functions to
implement various common routing algorithms for switched communications networks. It
will be useful to develop a library of such reusable functions written in C for use by the
model developer. The developer may then develop forms or menus for these functions in
order to obtain parameters from the model user, just as was done for submodels.

C funcdons such as those for varous routing algorithms, eg. static shortest path and
flooding would be suitable for inclusion in a C function library.)

4.3 Integrity Constraints and Reasonableness Checks

Model integrity constraints and consistency checks will be important for modeling
communications protocols. The following sections present some alternatives in this area.

4.3.1 Node and Transaction State Integrity

The C/PAWS user will be able to insert statements in each node to cause transactions to test
the integrity and consistency of transaction, node, and submodel state variables. The C
language should serve well here.

4.3.2 Statistics Integrity

The C/PAWS user will also be able to insert statements in the main function to test the
integrity and consistency of performance statistics at the end of the simulation. For

- B-12 -

example, one might want to check that the sum of the throughputs at nodes A and B equals
the throughput at node C.

4.3.3 Submodel Integrity

The C/PAWS user may want to check the consistency of some statistics concerning objects
local to some submodel. Assuming path names for library submodels are available, one
can embed integrity checks into a model to be placed i1 a library as follows. For each
submodel in the module, write a C function to perform the submodel integrity check and
place the C function in the global environment of the module. As part of the external
specification for the module, state that each such integnity function should be cailed by the
main function at the end of the simulation.

4.3.4 Reasonableness Checks

Often one has some idea before running a model what the range of possible values are for
various performance statistics. For example, one might know that mean response times
less that one second or greater that one minute are unreasonable. A mean response time of
5 hours would almost certainly indicate a modeling error. With PAWS 3, the user must
search the statistics report manually for unreasonable statistics.

C/PAWS may allow the user to declarg the reasonable range of values for each requested
statistics. C/PAWS could then highlight in some prominent manner those statistics falling
outside these ranges. The user could implement such reasonableness checks in C.
However, a declarative language extension would be preferable.

-B-13-

4.4 Statistic. Requests

In PAWS 3 statistics requests are embedded within individual nodes and submodels. The
submodel developer may not known which statistics the user desires. In C/PAWS this
problem will be overcome by a) allowing statistics request statements in the global
environment to reference submodels drawn from a submodel library by a full path name or
b) allowing conditiona statistics requests, which would cause the specified statistics to be
collected if a condition (evaluated at RESET time) were true. A library submodel may

contain statstics requests for all statstics of interest, which could then be tumed on by the
user as desired.

A related issue is the ability to separate statistics requests and simulation control from the
model specification. This will be addressed in ES/PAWS and C/PAWS by allowing
separate compilation of model modules, so that the entire model need not be retranslated
when changing a few parameters. User interfaces that obtain parameters interactively at run
time will also be useful here. "

- B-14 -

5.0 Communications Systems Features

All the enhancements discussed in this report will make modeling of communicatons
systems easier. In this section we discuss C/PAWS features that will be especially useful
for communications modeling but may not be relevant for other applications.

5.1 Timeout Processing

Timeouts are a very widely-used mechanism in communications protocols, particularly at
the lower layers of communications systems. The use of timeouts for a data link control
protocol has been modeled in this project [IRA 88). We propose to incorporate a special
node type for timeout processing in C/PAWS. The icon and abstract semantics of a
TIMEOUT node type are shown in Fig. 4. This figure specifies the actions to be taken by
C/PAWS when various events occur at a TIMEOUT node using intuitive pseudo~C
statements. The usage of such a timeout node is shown in Fig. 5.

- B-15-

7 -

Timeoyt Node

Semantics (pseudo - C)
switch (event) {
case NEWMESSAGE_ARRIVED:
save original for retransmission
save EXPECTED_ACK and MAXREXMIT information
set TIMEOUT interval
transmit one copy; break;

case ACK_ARRIVED:

if this is EXPECTED_ACK for some original msg
remove TIMEQUT svent
mark original message as ACKEDMSG
else
mark this as a BAD_ACK
propagate original and ACK message; break.
case TIMEOUT:
increment retransmission count
if retransmit count > MAXREXMIT
mark original msg as TOOMANYREXMIT
propagate original message
else
set TIMEQUT interval
transmit one copy
break
default :

error

Fig. 4 Timeout Node Semantics

-B-16 -

ACKEDMSG

<4
TOOMANYREXMIT
-
NEWMESSAGE > 72\ MESSAGE XMIT
@ AND REXMIT
TIMECOUT
ACK BAD ACK
EXPECTED ACK

Figure 5. Timeout Node Usage

-B-17 -

5.2 Flow Control

Flow control in communication systems is intended to prevent a fast sender of messages
from overflowing the capacity of a slow receiver. Two schemes are common. In the first,
the sender produces messages up to a fixed predetermined number and waits for
permission from the receiver to send any more. In the second, the sender continues to send
messages until instructed by the receiver (via a ¢hoke packet, XOFF signal, or CTRL-S

character) to stop doing so; the sender resumes upon receiving an explicit signal from the
receiver.

In C/PAWS and ES/PAWS it will be possible to model both these schemes using two
nodes. The first can be modeled using an ALLOCATE and CREATE node pair, while the
second can be modeled using a SERVICE node and a SET node. Both these mechanisms
are quite general and convenient, so it is not felt necessary to introduce a new node type for
modeling flow control.

5.3 Routing Algorithm Utilities .

Some routing algorithms involve the creation of routing tables, e.g. static shortest path
routing [TAN 81, SCH 87] as implemented in this project [IRA 88]. These involve some
fairly sophisticated algorithms that a model user may not wish to compute by hand. Such
algorithms may be provided by the model developer in the form of C library functicns,
possibly with a forms or menu-driven interface for a model user.

Communications systems involve other algorithms ancillary to the main modeling task that
would be useful to a model user. These could be handled similarly. An example of sucha
class of algorithms is discussed in the next section.

- B-18 -

5.4 Analytic Bottleneck Analysis

One can rule out many network design or configuration options as infeasible with simple
analytic bottleneck analysis. The following example is infeasible regardless of what goes
on at BALLOCATE and BRELEASE.

ASOURCE --> BALLOCATE --> CSERVCE --> BRELEASE ~> DSINK
(expo 1) (expo 2)

Such analytic bottleneck analysis might involve queueing-theoretic (product torm) analysis
and ad-hoc protocol analysis. An example of the lattcr is the simple conservative bottleneck
analysis carried out in the Task 3 report for the standard flooding algorithm for a switched
network. This kind of bottleneck analysis can be extremely valuable both for verifying that
a model is correct and for quickly evaluating design options, and would typically be carried
out by a comunications engineer.

Some programs for analytic bottleneck analysis could be placed in a C function library as
discussed in sec. 4.2. It may be desirable for a model developer to provide aform or
menu-driven interface to such functions for the model user.

5.5 Hierarchical simulation

Consider a wide-area network consisting of a collection of computers connected by a
packet switching network. One might be able to construct an efficient, detailed model of
each computer and an efficient model of the packet switching network. However, an
efficient, detailed model of the combination of the network and the individual computers
may be infeasible.

Suppose we could simulate an individual computer in an off-line experiment and construct
an approximate submodel of the computer based upon this experiment. We could
incorporate this approximate submodel into the overall network model. The resulting
model could yield accurate performance statistics in a much faster, cheaper simulation than
the complete, detailed simulation. This is an example of hierarchical simulation.

The motivation for hierarchical simulation is the possibility of dramatically reducing the
time and expense of large communications models. Unfortunately, there is no general

-B-19 -

S — e -

method for hierarchical simulation that has been validated. We propose a new method that
we expected to work well, but some validaton work must be done (in Phase II).

5.5.1 Definition

Hierarchical simulation refers to the following:

a)
b)

c)

separate off-line simulation of one or more submodels,

constructing simplified approximations of these submodels based upon
information (e.g. performance statistics) collected in the off-line experiments,
and

incorporating these simplified approximations into a higher-level model.

5.5.2 General Approach

The general approach we suggest is to:

a)

b)

)

d)

e)

allow the user to specify the form of a function mapping submodel and
transaction state to transaction response time,

conduct a number of off-line simulations of the submodel, varying submodel
parameters in each simulation,

in each off-line simulation, for each transaction, record the model state,
transaction state, and response time,

use regression analysis on this data to determine the parameters of the function
specified in (a) above,

construct an approximate representation of the submodel that evaluates the
submodel and transaction state on entry to the submodel and evaluates the
function constructed in (d) to obtain a submode! response time for the
transaction.

- B=20 -

5.5.3 A simple example
Sugpose we specified the following submodel response time function:
R=a"N
where

R = transaction submodel response time,
N = number of transactions in the submodel, and
a = a parameter to be determined by regression analysis.

We would conduct a number of simulations of the submodel. As each transaction entered
the submodel, we would record N, the number of transactions in the submodel. As each
transaction left the submodel, we would record R, the response time. By the end of the
experiments we would have recorded a large number of (N,R) pairs. We would perform
regression analysis to determine the best value of 2. We would then construct the
approximate submodel: .

ENTER --—--—---> DELAY (delay time=a*N) -——————> RETURN

-B-21 -

6.0 Language Enhancements

The model developer using C/PAWS will have a very powerful language available,
combining the flexibility and expressiveness of C with the high-level modeling features of
PAWS, ES/PAWS, and GPSM. This power will be further enhanced by some of the
facilities discussed in this section, such as interrupt resumption nodes and more flexible
FORK/JOIN constructs.

6.1 Failure Modeling Methodology

Failure modeling has been studied extensively at IRA [FER 84, PAL 85, VEL 86] and by
IRA clients [CON 86}, as well as in the context of this project [IRA 88]. The facilities
available for failure modeling are flexible and powerful. Due to the special relevance of
failure modeling for the Army's communications systems, this aspect of PAWS will be
enhanced in C/PAWS as discussed below.

Currently, failure modeling in PAWS involves creation of a failure transaction that
interrupts the processing of normal transactions for a time equal to the time to repair the
failed component. In C/PAWS this will be made easier using an interrupt resume node
described in sec. 6.2. The following failure modeling methodology is then recommended:

- Define a globally visible failure flag for each device. The flag will be true
if and only if the device has failed and has not yet recovered.

When a device fails, set its failure flag true and interrupt all transactions
in the submodel representing the device.

Use an interrupt resumption node (see sec. 6.2) in that submodel.
Typically, interrupted transactions should be destroyed at a sink
immediately following the resumption nodss, but occasionally some
special processing will be needed.

In the interrupted submodel, place an interrupt edge from the enter node
to a sink and from each call node to a sink. Label these edges with the
device failure flag. All transactions entering or returning to a failed
submodel will immediately sink.

- B~22 -

Timeouts specified external to the submodel will cause retransmission of
messages, as in the real system.

When a device recovers, set its failure flag to false.

In many cases it will be possible to simplify this modeling approach. It is possible to view
the occurrence of a failure as consisting of several phases. Each phase can be modeled
independently, under certain assumptions. Thus instead of generating failures
dynamucally, it is possible to model the behaviour of a system at some phase of its failure
mode. This results in shorter simulation runs and simpler models. This methodology is
described in Sec. 4.6 of tt ¢ Modeling and Experimental Evaluation report.

6.2 Interrupt Resumption Nodes

C/PAWS will allow transaction interruptions to be specified more conveniently than PAWS
3. For example, all the transactions in category C in submodel S can be interrupted.

A new interrupt resumption node type will address this issue nicely. There can be at most
one interrupt resumption node per submodel. If one is present, all transactions interrupted
in that submodel will immediately proceed to the resumption node. If one is not present,

interrupted transactions behave as in PAWS 3; they depart their current node along an
edge.

Interrupt resumption nodes have no specification. Transactions arriving at such nodes

depart immediately along an edge. Interrupt processing now can be specified easily using
all the ES/PAWS capabilities.

- B-23 -

6.3 FORK and JOIN Constructs

The PAWS FORK 2nd JOIN constructs will be made more flexible in C/PAWS. These
enhancements will allow the construction of reusable submodels and the collection of
arbitrary statistics easier. Some specific proposed enhancements are:

1) Allow a parent to proceed directly through a FORK without delay. The parent
will retain its resources instead of passing them to the eldest child. This
enhancement will allow parents to participate in the model at the same time as
the children.

2) A consequence of the first enhancement is to allow a parent to proceed to a
JOIN and wait there undl all its children JOIN.

3) Allow achild to force the release of a parent even before all children have
reached a JOIN. This may be useful in communications systems where, once
one copy of a message has reached the destination, the original may be
destroyed. .

6.4 Source Node Control

The model developer sometimes wants a source node to remain inactive for a while at the
beginning of the simulation or to halt before the simulation ends. In these cases, one
would like to specify start and stop times for the source node. A source node with start
time = 500.0 would not begin generating transactions until time 500.0. A source node with
stop time = 1000.0 would stop generating transactions at time 1000.0.

Stop times could be used to stop the generation of new messages, and allow the system to
consume the messages already generated (“drain” them) before stopping the simulation. A
less declarative but more general approach to this problem would be to allow set nodes to
affect source nodes. A power of zero would halt a source, a power of one would restore
normal behavior. Other positive powers would simply scale the interarrival times.

- B-24 -

7.0 Conclusions

A wide variety of enhancements have been discussed to the already powerful features of
PAWS 3 in order to make modeling of Army communications systems easier. Although
such modeling is already feasible in PAWS, it will become even faster and more efficient in
C/PAWS when the enhancements discussed here are incorporated.

An attemnpt has been made in this report to discuss the enhancements proposed for
C/PAWS at a fairly high level. It is felt that specific implementation decisions should be
made in the early stages of the Phase I implementation project. This allows CECOM to
discuss and review the proposed enhancements, and avoids placing unnecessary
constraints on the C/PAWS implementation at this stage of the project.

We believe that C/PAWS will be a highly productive, elegant tool for modeling Army
communications systems when the proposed enhancements are incorporated. It is quite
feasible to implement these enhancements using a variety of implementation strategies
discussed in this report, and in fact some are currently being implemented as part of the
ES/PAWS project.

-

-B-25-

References

BRO 88

I. C. Browne, P. Jain, D. M. Neuse and M. Esslinger, "ES/PAWS - A System
Level Design Aid", submitted for publication in Proceedings of the Design
Automation Conference, June,1988.

CON 86

Customer confidential document. The model involves a Sperry 1100/44 computer
system with multiple command, arithmetic and peripheral processors used for real-
time computations. Permission is being sought to disclose this information.

FER 84

V. Fernandes, J.C. Browne, D. Neuse, and R. Velpuri, "Some Performauce
Models of Distributed Systems”, Proceedings of the CMG XV International
Conference, Dec., 1984.

IRA 87a

Information Research Associates, Performance Analyst’s Workbench System
(PAWS) User's Manual, 1987.

IRA 87b

Information Research Associates Graphical Programming of Simulation Models
(GPSM) User's Manual, 1987.

IRA 88

Information Research Associates, Modeling and Experimental Evaluation Report,

Task 3 of Army SBIR Phase I project, draft submitted to CECOM, March 18,
1988.

.

NAV 87

United States Navy Contract No. N60021-86-C-0145, High Level Simulation of
Electronic Systems, 1987.

PAL 85

Annette Palmer, J. C. Browne, J. Silverman, A. Tripathi, and R. Velpur, "A
Performance Model of a Fault-Tolerant Distributed System for Evaluating

Reliability Mechanisms", Proceedings of the CMG XVI International Conference,
1985.

SCH 87

Mischa Schwartz, Telecommunication Networks: Protocols, Modeling and
Analysis , Addison-Wesley, May 1987.

- B-26 -

TAN 81
Andrew Tanenbaum, Computer Networks, Prentice-Hall, 1981,

VEL 86
Rajkumar Velpuri, "Performance Study of Zeus Distributed System wich Different
Communication Networks", M.S. Thesis, The University of Texas at Austin, May,
1986.

- B-27 -

Appendix C

Outline of PAWS and GPSM

Introduction to

Performance Analyst's Workbench System (PAWS)
and
Graphical Programming of simulation Models (GPSM)

1.0 Introduction

GPSM is a graphical modeling language that takes advantage of the natural human affinity
for pictorial and visual presentation of information. In the past, simulation models have
been coded in a variety of general purpose procedural languages such as FORTRAN and
PASCAL. More recently, a number of higher level languages specifically designed for
simulation modeling have made it possible for the modeler to concentrate more on the
details of producing an accurate model and less on the details of coding that model.

One of the more powerful and successful examples of such simulation languages is the
Performance Analyst's Workbench System, PAWS. PAWS provides the modeler with a
number of high-level primitives such as a variety of queueing disciplines (first-come-first-
served, first-fit, priority, etc.), probability distributions (uniform, exponential, ERILANG,
etc.), and output statistics (throughput, queue lengths, queueing times, etc.). PAWS also
uses 2 pictorial representation of abstract queueing networks called Information Processing
Graphs (IPGs) as both a design tool and a documentation method for the simulation models
that are ultimately coded in the highly declarative PAWS language. These IPGs have
tended to serve a purpose in the world of simulation modeling analogous to the use of flow
charts and other visual aids in general-purpose procedural programming. This despite the
fact that queueing networks seem to have a much more natural graphical representacon.

Very recently, the availability of low-cost, medium- and high-resolution graphics machines
has made it feasible to use the techniques of graphical programming to produce simulaton
models directly. The GPSM system is a tool that allows IPGs to be drawn and modified
directly on the graphics screen of any IBM-PC compatible machine using a mouse as a
pointing device. Such graphs, though sall very useful for design and documentation
purposes, may be automatically translated into simulaton programs in the PAWS language.
This enables modelers to deal directly and exclusively with the pictorial informaton in the
IPGs in order to design, execute, and refine their simulations.

-C-1 -

By using GPSM as a graphical interface to PAWS, all the advantages of a pictonial
programming lariguage may be obuined without sacrificing the power and versatility of a
compiled, specialized simulation language. The visual nature of the graphica! interface
greatly speeds and simplifies the transfer of ideas into symbols by utilizing the most natural
and straightforward kinds of symbols: pictures.

A performance modeling project using GPSM and PAWS might proceed 4s diagrammed in
Figure 1.

Start r—;
Construct]

System [___
Design (?PPCS;'SVI

f v

Analyze PAWS

and
Refine Model

4 v
Performancele—— PAWS
Statistics

Stop je—

Fig. 1
An analyst will generally abstract information from the initial system design in order to
draw information processing graphs (using GPSM) that capture the important performance

charactenistics of the design. Further information such as service distributions and

-C~2-

e

queueing disciplines for the active queues are then added to the graphs as attributes of the
queues themselves. When all of the required information has been added to the graphs,
GPSM will then be used to translate the pictorial form of the simulation model into the
declarauve, textual form expected by the PAWS simulation language. This completely
automatic translation results in a simulation program that can be compiled and executed
with PAWS in order to obtain statistical data and performance estimates of the system
design. Upon examining the resulting estimates, the analyst may choose to refine the
system design, modify the graphical representation of the model maintained by GPSM, and
repeat the cycle until the observed performance estimates obtained from PAWS meet the
desired (or required) performance.

2.0 Example GPSM Graph

The following sequence of pictures illustrates the construction and translation of a simple
GPSM simulation graph. The example we will use is a very simple model of a computer
system including memory, CPU, and two disk devices. In the interest of brevity we have
modeled each of the disk subsystems as a single service node. The pictures are a series of

snapshots of the GPSM graphics screen at various points during a typical interactive
session.

.C-3-

e e L e

Selecting a Node Icon

el o
o S Sl - -0_{',7-‘ -
_ A
] af
Placing the Node lcons
m
\ ("'—-"'& \ .
| ; .]
"“- ; \\ \ ——— ——
CSaS | e
L
\ge
Connecting the Nodes with Arcs
! -
pame-t
™
! \
[o— - I— ,! \ L : —— S
I P\ [+o— Nty
\ /
\

Squaring the Arcs

»

-C—4 -

T P L

1l lofen

pe=raans TmEe-: <

mmu AL Ao
Peciiication rl-wet

Qatity SO0 nusomen Iizstlit i et gl .
“ fels } v —
request (hatch.all) smademn (10,50)
auiamen L3
-
-y

Opening the Memory Allocation Node

TS o

hmu 1catiss t1-sei paiE
{hateadll) LE;]

_—v—-m é—u —o— Mooy —
i
Opening an Arc Definition -
ol o |
:Tm ! K]
: - t 1
B Hen
—— - e
segee iiven T:‘ Jhwa FRLV g

The Completed Graph with Labels Displayed

Translating the Graph to PAWS

3. GPSM Node Icon Summary

i
| GPSM Icons
T~ Sudel Emey =9 Tk Almstion
A0 Supedsd Gl _;:ZQTazrh:ua)
— 1 Submcdel Exit —h?--) “oken Crezuion
- saree _..1£:q Tcken Destrycsian
-s: Cink
—y_‘.—» Imarmt
=i Cameite
U~ User
—H39 Nenory Allocizion = Fark
—As Nemory Releasa 2N Goin
=2 Service —£ Selit
’
-".-_::—-* Deiay —o— Irach
__%;‘ Sov -qi}eiﬁée:wme
- C=6 -

